Механизация и автоматизация производственных процессов. Этапы и средства автоматизации производства

Решение задач автоматизации

Вопрос 3 Производственный и технологический процессы автоматизированного производства

Следящая система

Следящая система - автоматическая система, в которой выходная величина воспроизводит с определенной точностью входную величину, характер изменения которой заранее не известен.

Следящие системы используют для различных целей. В качестве выходной величины следящей системы можно рассматривать совершенно различные физические величины.Одной из наиболее широко распространенных разновидностей следящих систем являются системы управления положением объектов. Такие системы можно рассматривать как дальнейшее развитие и усовершенствование систем дистанционной передачи угловых или линейных перемещений, в которых регулируемой величиной обычно является угол поворота объекта.

На элемент сравнения (рис. 1, г) от задающего элемента, связанного с входным валом следящей системы, поступает входная величина α ВХ. Сюда же от объекта управления, связанного с выходным валом системы, поступает значение угла обработки а ВЫХ. В результате сравнения этих величин на выходе элемента сравнения появляется рассогласование θ = α ВХ - а ВЫХ.

Сигнал рассогласования с выхода элемента сравнения поступает на преобразователь (Пр), в котором угол θ преобразуется в пропорциональное ему напряжение U 0 - сигнал ошибки.

Однако в подавляющем большинстве случаев мощность сигнала ошибки недостаточна для приведения в действие исполнительного двигателя (М). Поэтому между преобразователем и исполнительным двигателем включают усилитель, обеспечивающий необходимое усиление сигнала ошибки по мощности. Усиленное напряжение с выхода усилителя поступает на М, который приводит в действие объект управления, а перемещение а ВЫХ последнего передается на принимающий элемент измерительной схемы, т. е. на элемент сравнения.

Адаптивная система

Адаптивная (самоприспособляющаяся) система - система автоматического управления, у которой автоматически изменяется способ функционирования управляющей части для осуществления в каком-либо смысле наилучшего управления. В зависимости от поставленной задачи и методов ее решения возможны различные законы управления, поэтому адаптивные системы разделяют на следующие виды:

§ адаптивные системы функционального регулирования, где управляющее воздействие является функцией какого-либо параметра, например, подача - функция одной из составляющих силы резания, скорость резания - функция мощности;

§ адаптивные системы предельного (экстремального) регулирования, которые обеспечивают поддержание предельного значения одного или нескольких параметров в объекте;

§ адаптивные системы оптимального регулирования, в которых учитывается совокупность многих факторов с помощью комплексного критерия оптимальности.

В соответствии с этим критерием осуществляется изменение регулируемых параметров и величин, например, поддержание в станке режима обработки, обеспечивающего максимальную производительность и наименьшую себестоимость обработки, определяется заданием оптимальных значений параметров (скоростей сил резания, температуры и т. д.), от которых зависят производительность и себестоимость процесса обработки.

Технологическая операция

Технологической операцией называют законченную часть технологичес­кого процесса, выполняемую на одном рабочем месте. Следует учитывать, что рабочим местом является элементарная единица структуры предпри­ятия, где размещены исполнители работы, обслуживающие технологическое оборудование, на ограниченное время оснастка и предметы труда. Напри­мер, обработку ступенчатого вала можно выполнять в следующей последо­вательности: на первой операции подрезают торцы и зацентровывают вспо­могательные базы, на второй – обтачивают наружную поверхность, на третьей – шлифуют эти поверхности.

Типовой технологической операцией называют технологическую опе­рацию, характеризуемую единством содержания и последовательности тех­нологических переходов для группы изделий с одними конструктивными и технологическими признаками.

Групповой технологической опе­рацией называют технологическую операцию совместного изготовления группы изделий с разными конструк­тивными, но общими технологически­ми признаками.

Виды технологических операций

Технологический процесс можно по­строить по принципу концентрированных или же дифференцированных тех­нологических операций.

а – последовательная; б – параллель­ная; в – параллельно-последовательная операции

Рисунок 3.2 - Основные виды концентра­ции

Концентрированнойтехнологиче­ской операцией - опе­рация, включающая в себя боль­шое количество технологических пере­ходов. Как правило, она имеет многоинструментальную налад­ку. Пределом концентрации операций является полная обработка детали на одной операции.

Дифференцированнойоперацией называют операцию , состоящую из минимального количества переходов. Пределом дифференциации является выполнение технологической операции, состоящей из одного технологиче­ского перехода.

Достоинства дифференциации операций состоят в следующем: приме­няется сравнительно простое и дешевое оборудование, простота и незначи­тельная сложность их наладки, создается возможность применения более высоких режимов обработки.

Недостатки принципа дифференциации операций: удлиняется технологи­ческая линия, увеличивается количество потребного оборудования и производ­ственной площади, увеличивается число рабочих, большое число установок.

Технологический переход

Технологическим переходом называют законченную часть технологиче­ской операции, выполняемая одними и теми же средствами технологиче­ского оснащения при постоянных технологических режимах и установе. Если при обточке валика сменяли инструмент, то обработка этим инстру­ментом той же поверхности заготовки будет являться новым технологиче­ским переходом. Но сама смена инструмента является вспомога­тельным переходом.

Вспомогательным переходом называют законченную часть технологической операции, состоящей из действий человека и (или) оборудования, которые не сопровождаются изменением свойств предмета труда, но необходимы для выполнения технологического перехода. Переходы могут быть совмещены во времени за счет одновременной обработки не­скольких поверхностей, т. е. могут осу­ществляться последовательно (черно­вая, получистовая, чистовая обточка ступенчатого вала или сверления четы­рех отверстий одним сверлом), парал­лельно (обточка ступенчатого вала не­сколькими резцами или сверление четы­рех отверстий, сразу четырьмя сверлами) или параллельно-последовательно (после обточки ступенчатого вала одновременно несколькими резцами, одновременное снятие фасок несколькими фасочными резцами или сверление четырех отверстий последовательно двумя сверлами).

Установ – часть технологической операции, выполняемая при неизменен­ном закреплении обрабатываемых загото­вок или собираемой сборочной единицы. Поворот деталей на какой-либо угол явля­ется новым установом. Если валик внача­ле обтачивают в трехкулачковом патроне с одного установа, а затем его перевернут и обточат, то это потребует два установа при одной операции (рисунок 3.4).

Рисунок 3.4 - Схема первого (а) и второго (б) установа

Позиция

Установленная и закреп­ленная на поворотном столе заготовка, подвергаемая сверлению, рассверлива­нию и зенкерованию, имеет один установ, но с поворотом стола она будет за­нимать новую позицию.

Позицией называют фиксированное положение, занимаемое жестко закрепленной обрабатываемой заготовкой или собираемой сборочной единицей со­вместно с приспособлением относительно инструмента или неподвижной части оборудования при выполнении определенной части операции. На многошпин­дельных автоматах и полуавтоматах заготовка при одном ее закреплении зани­мает различные позиции относительно станка. Заготовка перемещается в новое положение вместе с зажимным устройством.

При разработке технологического процесса обработки заготовок, пред­почтительно заменять установы позициями, так как каждый дополнитель­ный установ вносит свои погрешности обработки.

В условиях автоматизированного производства под операцией следует понимать законченную часть технологического процесса, выполняемую непрерывно на автоматической линии, которая состоит из нескольких единиц технологического оборудования, связанных автоматически действующими транспортно-загрузочными устройствами. Кроме основных технологических операций в состав ТП включают ряд необходимых для его осуществления вспомогательных операций (транспортных, контрольных, маркировочных и т.п.).

По компоновочной схеме

По виду транспорта различают автоматические линии:

а) со сквозным транспортированием заготовки между станками (применяется при обработке корпусных заготовок);

б) с боковым транспортированием (применяется при обработке коленчатых валов, гильз и т. д.);

в) с верхним транспортированием (применяется при обработке валов, зубчатых колес, фланцев и т. д.);

г) с комбинированным транспортированием;

д) с роторным транспортированием, используемым в роторных АЛ, в которых все технологические операции выполняются при непрерывном транспортировании заготовок и инструмента.

По степени гибкости:

а) синхронные или жесткие;

б) несинхронные или гибкие.

В синхронных автоматических линиях перемещение заготовок осуществляется через синхронизированные промежутки времени. Время обработки на рабочей позиции равно или кратно такту. Такт – интервал времени, через который периодически производится выпуск изделия определенного типа. Такие линии применяются в крупносерийном и массовом производствах.

В несинхронных автоматических линиях обработанные детали перемещаются по мере готовности выполняемой операции. Так как время обработки на каждой позиции разное, то нужны промежуточные накопители. Эти линии применяются в серийном и опытном производствах.

Вопрос 26 Вспомогательные устройства транспортно-накопительных подсистем: поддоны, палеты, толкатели. устройства поворота и ориентации деталей, устройства деления потоков (назначения, конструкции, обсласть применения)

Делители потока.

Применяются для деления потоков в ветвящихся автоматических линиях (рис. 1.). Делятся по принципу движения заслонок: качающихся, возвратно-поступательных и вращающихся.

Деление осуществляется посредством:

Качающихся заслонок поворачивающейся под действием самой заготовки (рис. 1.,а);

С помощью возвратно – поступательных заслонок (рис. 1.,б,в);

Применяются в том случае когда возникает необходимость в разделении общего потока на несколько самостоятельных потоков между однотипными станками. Устанавливаются между механизмом ориентации и накопителем или между накопителем и питателем. Конструкции разнообразны и зависят от формы и размера деталей и от конструкции накопителей и питателей.

Рис. 1. Делители потоков: а.- с чающимися заслонками; б.в – с помощью возвратно-поступающих заслонок.

Ориентирующие устройства.

Во многих случаях в автоматизированном производстве заготовка или деталь должны быть поданы в рабочую зону или на транспортные системы или к захватным или к поворотным устройствам и т.д. в ориентированном положении. Для этого используются различной конструкции ориентирующие устройства в виде шиберов, секторов с возвратно – поступательными или качающимися движениями, вращающихся дисков, лопатных механизмов, трубок втулок и т.п. Схемы ориентирующих устройств приведены на рис. 2.и 3.

Ориентация деталей возможна также и при их транспортировании При этом используется нессиметричность формы деталей и расположение центра тяжести. Способ ориентирования может быть пассивным и активным.

Пассивные ориентирующие устройства получили широкое распространение при вибрационном транспортировании деталей. Общим в принципе их действия является то, что неправильно ориентированные детали сбрасываются с транспортного устройства и возвращаются к началу потока, а далее следуют лишь правильно ориентированные.

Активные ориентирующие устройства придают детали сложное положение в пространстве в независимости от их исходного положения при поступлении в ориентирующее устройство. Принцип принудительного изменения используют так же при необходимости переориентации. Для несложных деталей малых размеров – применяют простые ориентирующие устройства, для дет. сложных форм или тяжёлых – ориентирующие устройства типа кантователей или универсальных поворотных устройств. Иногда используются действие магнитного поля.

Ориентируемые заготовки условно делят на:

Заготовки простой формы, ориентируемые с помощью вырезов в лотках, скосов, отсекателей;

Заготовки со смещённым центром тяжести, которые ориентируются разом или при повороте во время прохождения их через щель или вырез в лотке;

Симметричные и ассиметричные заготовки, которые ориентируются при провале в спец. окно лотка (ориентация по трафарету).

Заготовки ориентируемые с помощью спец. устройств.

Плоские заготовки типа кругов, колец (рис 2.,а) с d >h , ориентируются с помощью спирального лотка рабочая поверхность которого наклонена по радиусу к центру бункера под b =3-5 0 для обеспечения сброса второго слоя заготовок. Буртик лотка m <h .

Колпачки с d ³ h ориентируются пассивным способом с помощью выреза с язычком (рис 2.,б).

Заготовки ориентированные донышком вниз проходят по язычку не опрокидываясь, т.к. язычок является достаточной опорой для обеспечения устойчивого положения заготовки. Заготовки расположенные отверстием вниз, надавливаются на язычок теряют равновесие и падают в бункер.

Цилиндры с l > d ориентируются пассивным способом (рис. 2., в) для сброса неправильно ориентированных заготовок под лотком установлен скос, расположенным на высоте 1,1 d от поверхности лотка.

Для ориентировании ступенчатых дисков применяют пассивный способ (рис 2.,г) с использованием особенностей формы. Заготовки, расположенные большим диаметром вниз свободно проходят мимо сбрасывателя и перемещаются далее по лотку.

Рис. 2. Схемы ориентирующих устройств.

Заготовки с большим диаметром вверх – сталкиваются сбрасывателем с лотка в бункер.

Заготовки типа стержней с головками (рис 2.,д) ориентируются активным способом при помощи прорези, выполненным на прямолинейном участке лотка.

Для активной ориентации валиков с уступом (рис.3.,а) используют смещение центра тяжести.

Для ориентации тонких заготовок в виде скоб, треугольников, секторов применяют пассивный способ (рис. 3.,б). Для пластин Т образной формы – активный способ (рис.3.,в).

При необходимости переориентации заготовок в ходе техпроцесса применяют способ активной ориентации.

Рис. 3. Схемы ориентирующих устройств.

Поворотные устройства.

Используют в станках для перемещения обрабатываемой детали или инструмента на позицию. Это многопозиционные столы и барабаны, блоки многошпиндельных автома­тов, револьверные головки, дисковые магазины и делительные устройства (рис. 4.).

К поворотным устройствам предъявляются требования точности поворота на заданную угловую величину, точности и жесткости фикса­ции в рабочей позиций, осуществление поворота за минимальное время, при ограничениях на возникающие при этом динамические нагрузки.

Точность поворотных устройств, следует оценивать с вероятностных позиций. Под точностью здесь принять понимать точность углового позиционирования; характеризующуюся текущей погрешностью угла поворота. В лучших системах управления автоматиче­ских поворотных устройств, для минимизации погрешностей команды подают с соответст­вующим упреждением. Точность современных поворотных станков с ЧПУ составляет 3..6 угловых секунд.

Быстродействие характеризуется средней скоростью поворота w ср – до 1,0 с -1 . Универсальность оп­ределяется возможным диапазоном числа делений, который в современных автоматиче­ских поворотных столах равен 2...20000 и выше.

В качестве привода поворотных устройств используют шаговые двигатели (рис.4,а), позво­ляющие получать широкую универсальность по диапазону делений, состыковываться с системами управления с ЧПУ или ЭВМ. Поворотные устройства с гидроприводом (рис.4,б) и с маль­тийским механизмом (рис.4,в) широко применяются в станках и револьверных головках с постоян­ным фиксированным углом поворота.

Рис. 4 Схемы поворотных устройств.

Применяют такие схемы с периодическим включе­нием кинематической цепи различными муфтами (рис.4,в,г), и храповые механизмы (рис.4,е)

Транспортным пакетом называется укрупненная грузовая единица, сформированная из штучных грузов в таре и без нее, с применением различных способов и средств пакетирования, сохраняющая форму в процессе обращения и обеспечивающая возможность комплексной механизации погрузочно-разгрузочных и складских операций.

Одним из основных средств пакетирования являются поддоны (плоские, стоечные и ящичные).

Поддоны для гибких автоматизированных производств выбирают в соответствии с теми же методическими принципами, которые изложены выше применительно к созданию механизированных и автоматизированных складов любых типов.

Все поддоны можно классифицировать :

По назначению- транспортные и технологические (кассеты, спутники);

По роду транспортируемых грузов- универсальные (для грузов широкой номенклатуры) и специальные (для определенных грузов);

По конструкции (плоские, стоечные, ящичные, одно- и двухна-стильные, одно- и двухзаходные);

По материалу (металлические - из стали или легких сплавов, деревянные, пластмассовые, картонные, композитные с применением древесно-стружечных плит и других материалов);

По продолжительности использования (разового использования, многооборотные);

По области применения (внутрискладские поддоны, для внутризаводских перевозок, для внешних магистральных перевозок);

По размерам (150 х 200; 200 х 300; 300 х 400; 400 х 600; 600 х 800; 800 х 800; 800 х 1000; 800 х 1200; 1600 х 1000; 1600 х 1200).

Многооборотные поддоны являются частью транспортно-складского оборудования ГАП, участка, цеха, предприятия. Поддоны разового использования можно рассматривать как разновидность транспортной упаковки грузов.

Особенностью специальных технологических поддонов для ГАП является то, что на них определенные грузы (заготовки, полуфабрикаты, детали) располагают в фиксированном положении, а иногда и закрепляют заранее, как, например, на поддонах-спутниках многооперационных сверлильно-фрезерно-расточных станков, и подают на них детали на станок непосредственно в зону обработки.

Поддоны-кассеты и поддоны-спутники изготовляют штампованными, сварными, литыми, и они могут служить самостоятельным устройством для формирования грузовой транспортно-складской единицы, или их укладывают на стандартные поддоны.

Транспортно-складские поддоны универсальны по роду размещаемых в них грузов и могут быть металлическими или пластмассовыми, а по конструкции плоскими, стоечными и ящичными.

Перемещения деталей типа тел вращения в ГПС осуществляются чаще всего с использованием простейших транспортных палет без закрепления на них изделий. Такие палеты одновременно выполняют
функции транспортирования и складирования.

Существуют три их разновидности:

1) одиночные палеты, которые перемещаются поодиночке и не могут быть уложены в несколько ярусов;

2) выдвижные палеты, установленные в специальных контейнерах, с возможностью выдвижения-задвижки;

3) многоярусные палеты, которые можно располагать поблизости от РМ одна на другой, в штабелях.

Перспективным является создание универсальных многопредметных палет на основе универсальных модулей. Такие палеты состоят из рамы обеспечивающей возможность обработки различных по форме изделий на различных РМ, вставок, которые используются для установки специальных элементов, служащих для размещения заготовок (деталей); форма и размеры этих элементов определяются формой и размерами заготовок (деталей).

Несущая рама (сварная стальная конструкция) имеет размеры европалет (1200 х 800 мм), хотя могут быть использованы и меньшие габариты. Имея гладкую опорную поверхность, рама может быть установлена на полу либо перемещаться на роликах или с помощью цепных транспортеров. Расположенные поперек или вдоль рамы защитные трубки предохраняют изделия от повреждений в ходе транспортирования. В углах рамы приварены подпорки для укладывания изделий в несколько ярусов. Расстояния между ярусами могут быть изменены с помощью вставляемых мерных стержней.

Для выбора палет можно использовать следующие критерии: соответствие габаритам европалет; масса изделий и палет; количество изделий, размещенных на палете (зависит от размеров и формы изделий); минимальное штучное время обработки одного изделия; требуемое время безлюдной работы ГПС.

Для изделий, имеющих сравнительно малые размеры и длительное время обработки, когда запаса изделий на одной-двух палетах достаточно для обеспечения устойчивой работы ГПС, использовать одиночные палеты;
- для крупногабаритных изделий с малым временем обработки применять выдвижные и многоярусные палеты с дополнительными устройствами для манипулирования ими.

К таким палетам относятся палеты со смонтированными на них крепежными приспособлениями или специальные транспортные палеты. Время, необходимое для замены палет, можно значительно сократить, вынеся действия закрепления-открепления заготовок из рабочей зоны на дополнительный носитель сменных палет, который обеспечивает быстрый их возврат обратно в рабочую зону.

Наиболее распространены станочные (входящие в комплектацию ГПМ), транспортные и вспомогательные палеты.

Чаще всего в ГПС используются палеты, служащие одновременно как для базирования и закрепления деталей, так и для транспортирования и манипулирования ими. Это обеспечивает гибкость транспортной подсистемы, поскольку, с одной стороны, все палеты имеют унифицированную рабочую поверхность, а с другой - столы системы транспортирования и манипулирования приспособлены для использования палет конкретного типа.

В случае использования станочных палет, входящих в ГПМ, заготовка крепится на них вне пределов рабочей зоны, параллельно с обработкой иной детали. После этого она перемещается в рабочую зону, где автоматически фиксируется для обработки.

Вопросы к экзамену по

Вопрос 1 Цель и задачи автоматизации производственных процессов. Виды автоматизации производственных процессов

Основными целями автоматизации технологического процесса являются :
-- повышение эффективности производственного процесса;
-- повышение безопасности производственного процесса.

Цели достигаются посредством решения следующих задач автоматизации технологического процесса:
-- улучшение качества регулирования;
-- повышение коэффициента готовности оборудования;
-- улучшение эргономики труда операторов процесса;
-- хранение информации о ходе технологического процесса и аварийных ситуациях.

Под термином «автоматизация» понимается совокупность методических, технических и программных средств, обеспечивающих проведение процесса измерения без непосредственного участия человека. Цели автоматизации представлены в табл. 1.

Таблица 1

Цели автоматизации
Научные Технические Экономические Социальные
1. Повышение эффек­тивности и качества научных результатов за счет более полного исследования моделей 2. Повышение точности и достоверности результатов исследова­ний за счет оптимиза­ции эксперимента. 3. Получение качествен­но новых научных ре­зультатов, невозмож­ных без ЭВМ. 1. Повышение каче­ства продукции за счет повторяемости операций, увеличения числа измере­ний и получения более полных дан­ных о свойствах изделий. 2. Повышение на­дела точности изделий за счет получения более полных данных о процессах старения и их пред­шественниках. 1. Экономия трудо­вых ресурсов за счет замены труда чело­века трудом маши­ны. 2. Сокращение за­трат в промыш­ленности за счет уменьшения тру­доемкости работ. 3. Повышение про­изводительности труда на основе оптимального рас­пределения работ между человеком и машиной и ликвида­ции неполной загрузки при эпизо­дическом обслужи­вании объекта. 1. Повышение интеллектуального потенциала за счет поручения рутин­ных операций ма­шине. 2. Ликвидация слу­чаев занятости пер­сонала операций в нежелательных условиях. 3. Освобождение человека от тяже­лого физического труда и исполь­зование сэконом­ленного времени для удовлетворения духовных потреб­ностей.

Задачами автоматизации являются:

Устранение или минимизация «человеческого фактора» при выполнении функций системой или прибором;

Достижение заданных показателей качества при реализации автоматизируемых функций.

Решение задач автоматизации технологического процесса осуществляется при помощи внедрения современных методов и средств автоматизации. В результате автоматизации технологического процесса создается АСУ ТП.

Все вопросы

Основные принципы автоматизации производственных процессов

Автоматизация производственных процессов остается генеральной линией развития и модернизации в сфере промышленного производства на протяжении многих десятилетий.

Понятие « автоматизация» предполагает, что машинам, приборам и станкам помимо собственно производственной функции передаются функции управления и контроля, которые до этого выполнялись человеком. Современное развитие технологий позволяет автоматизировать не только физический, но и интеллектуальный труд, если он основан на формальных процессах.

За последние 7 десятилетий автоматизация предприятий прошла долгий путь, который умещается в 3 этапа :

  1. системы автоматического контроля (САК) и системы автоматического регулирования (САР)
  2. системы автоматизации технологических процессов (САУ)
  3. автоматизированные системы управления технологическими процессами (АСУ ТП)

На современном уровне автоматизация систем управления производством представляет собой многоуровневую схему взаимодействия людей и машин на основе систем автоматического сбора данных и сложных вычислительных комплексов, которые неустанно совершенствуются.

В нынешних экономических условиях на передовых позициях оказываются промышленные предприятия, которые гибко реагируют на изменяющиеся условия, могут выпускать разнообразную номенклатуру, быстро наладить выпуск продукции по новым стандартам, точно исполняют сроки и объемы заказов, при этом предлагая конкурентную цену и сохраняя качество на высоком уровне. Без современных средств и систем автоматизации производства соответствовать данным требованиям практически невозможно.

Основные цели и преимущества автоматизации предприятия в современных условиях:

  • уменьшение числа рабочих и обслуживающего персонала, в особенности на непрестижных, « грязных», « горячих», вредных, физически трудных участках производства
  • улучшение качества продукции;
  • увеличение производительности (рост объема продукции);
  • создание ритмичного производства с возможностью точного планирования;
  • повышение эффективности производства, в том числе более рациональное использование сырья, снижение потерь, повышение скорости выпуска продукции, повышение энергоэффективности,
  • улучшение показателей экологичности и безопасности производства, в том числе снижение вредных выбросов в атмосферу, снижение уровня травматизма и т.п.
  • повышение качества управления на предприятии, согласованная работа всех уровней системы производства.

Таким образом, затраты на автоматизацию производства и предприятия непременно окупаются при условии наличия спроса на выпускаемую продукцию.

Для достижения данных целей необходимо решить следующие задачи по автоматизации производственных процессов :

  • внедрение современных средств автоматизации (оборудования, программ, систем управления и контроля и т.п.)
  • внедрение современных методов автоматизации (принципов построения систем автоматизации)

В результате повышается качество регулирования, удобство труда оператора, коэффициент готовности оборудования. Кроме этого упрощается получение, обработка и хранение информации о производственных процессах и работе оборудования, а также контроль качества.

Характеристика АСУ ТП

Автоматизированные системы управления технологическими процессами освобождают человека от функций контроля и управления. Здесь станок, линия или целый производственный комплекс с помощью собственной системы связи самостоятельно осуществляют сбор, регистрацию, обработку и передачу информации при помощи всевозможных датчиков, контрольно-измерительных приборов и процессорных модулей. Человеку необходимо лишь задать параметры для выполнения работы.

Например, так работает автоматизированная система приварки крепежа Soyer:

Эти же устройства сбора информации могут выявить отклонения от заданных норм, дать сигнал для устранения нарушения, или в отдельных случаях самостоятельно исправить его.

Гибкие системы автоматизации предприятия

Ведущей современной тенденцией в автоматизации производств и предприятий является использование гибких автоматизированных технологий (ГАП) и гибких производственных систем (ГПС). Среди характерных особенностей таких комплексов:

  1. Технологическая гибкость: ускорение и замедление производительности с сохранением слаженности работы всех элементов системы, возможность автоматической смены инструмента и т.п..
  2. Экономическая гибкость: быстрая перестройка системы под новые требования номенклатуры без лишних производственных затрат, без замены оборудования.
  3. В структуре ГПС задействованы промышленные роботы, манипуляторы, средства транспортировки, процессорные, в том числе микропроцессорные системы управления.
  4. Создание ГПС предполагает комплексную автоматизацию предприятия или производства. При этом производственная линия, цех или предприятие работают в едином автоматизированном комплексе, который включает, помимо основного производства, проектирование, транспортировку, складирование готовой продукции.

Элементы автоматизации производства

  1. Станки с числовым программным управлением (ЧПУ);
  2. Промышленные роботы и роботизированные комплексы;
  3. Гибкие производственные системы (ГПС);
  4. Системы автоматизированного проектирования;
  5. Системы автоматического складирования;
  6. Компьютерные системы контроля качества;
  7. Автоматизированная система технологического планирования производства.

В следующем видео вы сможете увидеть, как промышленные сварочные роботы Kuka выполняют автоматизированную сварку:

Средства автоматизации производства от Вектор-групп

Компания Вектор-групп - профессиональный поставщик промышленного оборудования ведущих мировых производителей. В нашем каталоге вы найдете оборудование для автоматизации производств и заводов машиностроения, сварочных производств, производств, связанных с металлообработкой и другими направлениями.

Оборудование для автоматизации включает:

— промышленные роботы Kuka (Германия) - позволяют выполнить автоматизацию процессов сварки, резки, обработки материалов, манипулирования, сборки, паллетирования, а также другие процессы.

— системы автоматической приварки крепежа Soyer (Германия),

— автоматические системы транспортировки и грузозахваты DESTACO (США).

Компания предлагает помощь в подборе, выполняет поставку оборудования, осуществляет сервисное обслуживание. Вы можете заказать как типовое производственное решение, так и решение, спроектированное под конкретные индивидуальные требования.

По всем вопросам, касающимся нашего оборудования, специфике его работы, стоимости, а так же любым другим вопросам, обращайтесь к нашим специалистам

Представляет собой процедуру, в рамках которой функции контроля и управления, выполнявшиеся человеком, передаются приборам и устройствам. За счет этого существенно повышается результативность труда и качество продукции. Кроме этого, обеспечивается сокращение доли рабочих, привлеченных к разным промышленным сферам. Рассмотрим далее, что собой представляют автоматика и автоматизация производственных процессов.

Историческая справка

Самостоятельно функционирующие приборы - прообразы современных автоматических системы - стали появляться еще в древности. Однако до самого 18 столетия была широко распространена кустарная и полукустарная деятельность. В этой связи такие "самодействующие" устройства не получили практического применения. В конце 18-го - начале 19-го вв. произошел резкий скачок объемов и уровня производства. Промышленная революция создала предпосылки для усовершенствования приемов и орудий труда, приспособления оборудования для замены человека.

Механизация и автоматизация производственных процессов

Изменения, которые вызвала коснулись в первую очередь дерево- и металлообработки, прядильных, ткацких заводов и фабрик. Механизация и автоматизация активно изучались К. Марксом. Он видел в них принципиально новые направления прогресса. Он указывал на переход от использования отдельных станков к автоматизации их комплекса. Маркс говорил о том, что за человеком должны закрепляться сознательные функции контроля и управления. Работник становится рядом с производственным процессом и регулирует его. Главными достижениями того времени стали изобретения русского ученого Ползунова и английского новатора Уатта. Первый создал автоматический регулятор для питания парового котла, а второй - центробежный контроллер скорости паровой машины. Достаточно продолжительное время оставалась ручной. До внедрения автоматизации замена физического труда осуществлялась посредством механизации вспомогательных и основных процессов.

Ситуация сегодня

На современном этапе развития человечества системы автоматизации производственных процессов основываются на использовании компьютеров и различного программного обеспечения. Они способствуют сокращению степени участия людей в деятельности или полностью исключают его. В задачи автоматизации производственных процессов входит повышение качества выполнения операций, сокращение времени, которое на них требуется, снижение стоимости, увеличение точности и стабильности действий.

Основные принципы

Сегодня средства автоматизации производственных процессов внедрены во многие сферы промышленности. Независимо от сферы и объема деятельности компаний, практически в каждой из них используются программные устройства. Существуют различные уровни автоматизации производственных процессов. Однако для любого из них действуют единые принципы. Они обеспечивают условия для эффективного выполнения операций и формулируют общие правила управления ими. К принципам, в соответствии с которыми осуществляется автоматизация производственных процессов, относят:

  1. Согласованность. Все действия в рамках операции должны сочетаться друг с другом, идти в определенной последовательности. В случае рассогласованности вероятно нарушение хода процесса.
  2. Интеграция. Автоматизируемая операция должна вписываться в общую среду предприятия. На той или иной стадии интеграция осуществляется по-разному, однако суть этого принципа неизменна. Автоматизация производственных процессов на предприятиях должна обеспечивать взаимодействие операции с внешней средой.
  3. Независимость исполнения. Автоматизируемая операция должна осуществляться самостоятельно. Участие человека в ней не предусматривается, или оно должно быть минимально (только контроль). Работник не должен вмешиваться в операцию, если она осуществляется согласно установленным требованиям.

Указанные принципы конкретизируются в соответствии с уровнем автоматизации того или иного процесса. Для операций устанавливаются дополнительные пропорциональности, специализации и так далее.

Уровни автоматизации

Их принято классифицировать в соответствии с характером управления компании. Оно, в свою очередь, может быть:

  1. Стратегическим.
  2. Тактическим.
  3. Оперативным.

Соответственно, существует:

  1. Нижний уровень автоматизации (исполнительский). Здесь управление касается регулярно совершаемых операций. Автоматизация производственных процессов ориентирована на исполнение оперативных функций, поддержание установленных параметров, сохранение заданных режимов работы.
  2. Тактический уровень. Здесь обеспечивается распределение функций между операциями. В качестве примеров можно привести планирование производства или обслуживания, управление документами или ресурсами и так далее.
  3. Стратегический уровень. На нем осуществляется управление всей компанией. Автоматизация производственных процессов стратегического назначения обеспечивает решение прогнозных и аналитических вопросов. Она необходима для поддержания деятельности высшего административного звена. Этот уровень автоматизации обеспечивает стратегическое и финансово-хозяйственное управление.

Классификация

Автоматизация обеспечивается за счет использования разнообразных систем (OLAP, CRM, ERP и пр.). Все они разделяются на три основных типа:

  1. Неизменяемые. В этих системах последовательность действий устанавливается в соответствии с конфигурацией оборудования либо условиями процесса. Она не может изменяться в ходе операции.
  2. Программируемые. В них возможно изменение последовательности в зависимости от конфигурации процесса и заданной программы. Выбор той или иной цепочки действий осуществляется посредством специального набора инструментов. Они читаются и интерпретируются системой.
  3. Самонастраиваемые (гибкие). Такие системы могут осуществлять выбор нужных действий по ходу работы. Изменения конфигурации операции происходит в соответствии с информацией о течении операции.

Все эти типы могут использоваться на всех уровнях отдельно либо в комплексе.

Виды операций

В каждой экономической отрасли присутствуют организации, выпускающие продукцию или предоставляющие услуги. Их можно разделить на три категории в соответствии с "удаленностью" в цепи переработки ресурсов:

  1. Добывающие или производящие - сельскохозяйственные, нефтегазодобывающие предприятия, например.
  2. Перерабатывающие природное сырье организации. При изготовлении продукции они используют материалы добытые или созданные компаниями из первой категории. К ним, например, относятся предприятия электронной, автомобильной промышленности, электростанции и так далее.
  3. Обслуживающие компании. Среди них - банки, медицинские, образовательные учреждения, предприятия общепита и пр.

Для каждой группы можно выделить операции, связанные с предоставлением услуг или выпуском продукции. К ним относят процессы:

  1. Управления. Эти процессы обеспечивают взаимодействие внутри предприятия и способствуют формированию отношений компании с заинтересованными участниками оборота. К последним, в частности, относят надзорные органы, поставщиков, потребителей. В группу бизнес-процессов входят, например, маркетинг и продажи, взаимодействие с покупателями, финансовое, кадровое, материальное планирование и так далее.
  2. Анализа и контроля. Эта категория связана со сбором и обобщением сведений о выполнении операций. В частности, к таким процессам относят операционное управление, контроль качества, оценку запасов и пр.
  3. Проектирования и разработки. Эти операции связаны со сбором и подготовкой исходных сведений, реализацией проекта, контролем и анализом результатов.
  4. Производства. Эта группа включает в себя операции, связанные с непосредственным выпуском продукции. К ним относят, в том числе, планирование потребности и мощности, логистику, обслуживание.

Большая часть этих процессов сегодня автоматизирована.

Стратегия

Необходимо отметить, что автоматизация производственных процессов отличается сложностью и трудоемкостью. Для достижения поставленных целей необходимо руководствоваться определенной стратегией. Она способствует улучшению качества выполняемых операций и получению от деятельности желаемые результаты. Особое значение сегодня имеет грамотная автоматизация производственных процессов в машиностроении. Стратегический план можно коротко представить следующим образом:


Преимущества

Механизация и автоматизация различных процессов позволяет значительно повысить качество товаров и управления производством. Среди прочих преимуществ следует назвать:

  1. Увеличение скорости выполнения повторяющихся операций. За счет снижения степени участия человека одни и те же действия могут осуществляться быстрее. Автоматизированные системы обеспечивают большую точность и сохраняют работоспособность вне зависимости от продолжительности смены.
  2. Повышение качества работы. При снижении степени участия людей уменьшается или исключается влияние человеческого фактора. Это существенно ограничивает вариации выполнения операций, что, в свою очередь, предотвращает множество ошибок и повышает качество и стабильность работы.
  3. Увеличение точности управления. Использование информационных технологий позволяет сохранять и учитывать в дальнейшем больший объем сведений об операции, чем при ручном контроле.
  4. Ускоренное принятие решений при типовых ситуациях. Это способствует улучшению характеристик операции и предотвращает несоответствия на следующих этапах.
  5. Параллельность выполнения действий. дают возможность осуществлять несколько операций в одно время без ущерба для точности и качества работы. Это ускоряет деятельность и улучшает качество результатов.

Недостатки

Несмотря на очевидные преимущества, автоматизация может быть далеко не всегда целесообразной. Именно поэтому перед ее осуществлением необходим всесторонний анализ и оптимизация. После этого может сложиться так, что автоматизация не потребуется или будет невыгодна в экономическом смысле. Ручное управление и выполнение процессов может стать более предпочтительным в следующих случаях:

Заключение

Механизация и автоматизация, несомненно, имеют огромное значение для производственной сферы. В современном мире все меньше операций выполняется вручную. Однако и сегодня в ряде отраслей не обойтись без такого труда. Автоматизация особенно эффективна на крупных предприятиях, где выпускается продукция для массового потребителя. Так, например, на автомобильных заводах в операциях участвует минимальное количество людей. При этом они, как правило, осуществляют контроль за ходом процесса, не участвую в нем непосредственно. Модернизация промышленности в настоящее время идет очень активно. Автоматизация производственных процессов и производств считается сегодня наиболее эффективным способом повышения качества продукции и увеличения объема ее выпуска.

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.

Введение

Чтобы различные технические устройства выполняли тре­буемые функции, необходимо организовать тот или иной процесс управления. Процесс управления может быть реализован "руч­ным" способом или с помощью совокупности технических средств, которые, в общем случае, называют системами автома­тического управления,

Системы автоматического управления в сельскохозяйствен­ном производстве и переработке продукции призваны управлять режимами работы оборудования, теплиц, холодильных установок и т.п. Особенностью этих систем является работа с биологиче­скими объектами, животными, растениями и продуктами их пе­реработки.

Необходимость внедрения и развитие систем автоматическо­го управления способствовали созданию отдельного научно-технического направления, которое включает элементную базу, теоретические вопросы анализа и синтеза, вопросы проектирова­ния и обеспечения требуемой надёжности. Вместе с тем это от­дельное направление имеет тесную связь с электроникой, элек­тротехникой, математикой и другими разделами науки и техники. В развитие систем автоматики внесли вклад ученые Н.Н.Боголюбов, И.Ф.Бородин, Н.Винер, Н.Е.Жуковский, А.Н.Колмогоров, Н.М.Крылов, А.В.Михайлов, Г.Найквист, В.Д.Шеповалов, С.А.Чаплыгин, и многие другие ученые.

Предметом дисциплины "Автоматика" является - теоретиче­ские основы и технические средства автоматики.

Основы теории автоматического управления

Лекция 1 . «Принципы построения автоматизированных производств»

Автоматизация производства

Автоматика - отрасль науки и техники, охватывающая тео­рию и устройства средств и систем автоматического управления машинами и технологическими процессами Она возникла в 19 ве­ке с появлением механизированного производства на базе пря­дильных и ткацких станков, паровых машин и др., которые за­менили ручной труд и дали возможность повысить его произво­дительность.

Автоматизации всегда предшествует процесс полной механи­зации - такого производственного процесса, в котором человек не затрачивает на выполнение операций физической силы.

По мере развития техники функции управления процессами и машинами расширялись и усложнялись. Человек уже во многих случаях не был в состоянии управлять механизированным произ­водством без специальных дополнительных устройств. Это обусло­вило возникновение автоматизированного производства, при ко­тором работники высвобождаются не только от физического тру­да, но и от функций контроля за машинами, оборудованием, произ­водственными процессами и операциями, а также управления ими.

Под автоматизацией производственных процессов пони­мают комплекс технических мероприятий по разработке но­вых технологических процессов и создание производства на основе высокопроизводительного оборудования, выпол­няющего все основные операции без непосредственного уча­стия человека.


Автоматизация способствует значительному повышению про­изводительности труда, улучшению качества продукции и усло­вий труда людей

В сельском хозяйстве, пищевой и перерабатывающей про­мышленности автоматизируется контроль и управление темпера­турой, влажностью, давлением, регулирование скорости и перемещение, сортирование по качеству, упаковка и многие другие процессы и операции, обеспечивая более высокую их эффективность, экономию труда и средств.

Автоматизированные производства по сравнению с не автоматизированными обладают определенной спецификой:

· для повышения эффективности они должны охватывать большее количество разнородных операций;

· необходима тщательная проработка технологии, анализ объектов производства, маршрутов движения и операций, обеспечения надежности процесса с заданным качеством;

· при широком ассортименте выпускаемой продукции и се­рости работы технологические решения могут быть многовариатными;

· повышаются требования к четкой и слаженной работе раз­личных служб производства.

При проектировании автоматизированного производства должны быть соблюдены следующие принципы:

1. Принцип завершенности. Следует стремиться к выполнению всехопераций в пределах одной автоматизированной производственной системы без промежуточной передачи полуфабрикатов

в другие подразделения. Для реализации этого принципа необходимо обеспечить:

Технологичность продукта, т.е. на его изготовление должно расхсодоваться минимальное количество материалов, времени и средств:

Унификацию методов обработки и контроля продукта;

Расширение типажа оборудования с повышенными технологическими возможностями для обработки нескольких видов сырьяили полуфабрикатов.

2. Принцип малооперационной технологии. Количество опе­раций промежуточной обработки сырья и полуфабрикатов должно быть сведены к минимуму, а маршруты их подачи - оптими-зированы.

3. Принцип малолюдной технологии. Обеспечение автомат­икой работы на протяжении всего цикла изготовления продукта. Для этого необходимо стабилизировать качество входного сырья, повысить надежность оборудования и информационного обеспечения процесса.

4. Принцип безотладочной технологии. Объект управления не должен требовать дополнительных наладочных работ после того, как он пущен в эксплуатацию.

5. Принцип оптимальности. Все объекты управления и служ­бы производства подчинены единому критерию оптимальности, например, выпускать продукцию только высшего качества.

6. Принцип групповой технологии. Обеспечивает гибкость производства, т.е. возможность перехода с выпуска одного про­дукта на выпуск другого. В основе принципа лежит общность операций, их сочетаний и рецептур.

Для серийного и мелкосерийного производства характерно создание автоматизированных систем из универсального и агре­гатного оборудования с межоперационными емкостями. Это обо­рудование в зависимости от перерабатываемого продукта может переналаживаться.

Для крупносерийного и массового выпуска продукции авто­матизированное производство создается из специального обору­дования, объединенного жесткой связью. В подобных производ­ствах применяется высокопроизводительное оборудование, на­пример, роторное для разливки жидкостей в бутылки или пакеты.

Для функционирования оборудования необходим промежу­точный транспорт для сырья, полуфабрикатов, компонентов, раз­личных сред.

В зависимости от промежуточного транспорта автоматизиро­ванные производства могут быть:

Со сквозной транспортировкой без перестановки сырья, по­луфабриката или сред;

С перестановкой сырья, полуфабрикатов или сред;

С промежуточной емкостью.

По видам компоновки оборудования (агрегатирования) разли­чают автоматизированные производства:

Однопоточные;

Параллельного агрегатирования;

Многопоточные.

В однопоточном оборудование расположено последовательно по ходу выполнения операций. Для увеличения производитель­ности однопоточного производства операция может выполняться на однотипном оборудовании параллельно.

В многопоточном производстве каждый поток выполняет аналогичные функции, но работает независимо один от другого.

Особенностью сельскохозяйственного производства и пере­работки продукции является быстрое снижение ее качества, на­пример, после забоя скота или съема плодов с деревьев. Это тре­бует такого оборудования, которое имело бы высокую мобиль­ность (возможность выпуска широкого ассортимента продуктов из однотипного сырья и переработки различных видов сырья на однотипном оборудовании).

Для этого создаются переналаживаемые производственные системы, обладающие свойством автоматизированной перена­ладки. Организационным модулем таких систем является произ­водственный модуль, автоматизированная линия, автоматизиро­ванный участок или цех.

Производственным модулем называют систему, состоящую из единицы технологического оборудования, оснащенного авто­матизированным устройством программного управления и сред­ствами автоматизации технологического процесса, автономно функционирующую и имеющую возможность встраиваться в систему более высокого уровня (рис. 1.1).

1- оборудование для вы­полнения одной или нескольких операций; 2- управляющее устройство; 3- погрузочно-разгрузочное устройство; 4- транспортно-накопительное устройство (промежуточная емкость); 5- контрольно-измерительная система

Рисунок 1.1 - Структура производст­венного модуля

Производственный модуль может включать в себя, например, сушильную камеру, контрольно-измерительную систему, погрузочно-разгрузочную и транспорт­ную системы с локальным управлением или смесительную уста­новку с аналогичным добавочным оборудованием.

Частным случаем производственного модуля является произ­водственная ячейка - комбинация модулей с единой системой измерения режимов работы оборудования, транспортно- накопительной и погрузо-разгрузочной системами (рис. 1.2). Производственная ячейка может встраиваться в системы более высокого уровня.

1- оборудования для выполнения одной или не­скольких операций; 2- приемный бункер; 3-погрузочно-разгрузочное устройство; 4- конвейер; 5- проме­жуточная емкость; 6- управляющий компьютер; 7- контрольно-измерительная система.

Рисунок 1.2 - Структура производ­ственной ячейки

Автоматизированная ли­ния - переналаживаемая систе­ма, состоящая из нескольких производственных модулей или ячеек, объединенных еди­ной транспортно- складской системой и системой автоматического управления технологического процесса (АСУ ТП). Оборудование автоматизированной линии расположено в приня­той последовательности выполнения технологических операций. Структура автоматизированной линии изображена на рис. 1.3.

1,2,3,4- производствен­ные ячейки и модули; 5- транспортная система; 6-склад; 7- управляющий компьютер.

Рисунок 1.3 - Структура автоматизированной линии

В отличие от автоматизированной линии на переналаживае­мом автоматизированном участке предусмотрена возможность изменения последовательности использования технологического оборудования. Линия и участок могут иметь отдельно функцио­нирующие единицы технологического оборудования. Структура автоматизированного участка приведена на рис. 1.4.

1,2,3- автоматизиро­ванные линии; 4- производственные ячейки; 5- производственные модули; 6- склад; 7- управляющий компьютер

Рисунок 1.4 - Структура автоматизированного участка



Понравилась статья? Поделиться с друзьями: