Чему равно число ПИ и что оно означает? Вычисление N-го знака числа Пи без вычисления предыдущих

В числе ПИ очень много загадок. Вернее это даже не загадки, а своего рода какая-то Истина, которую за всю историю человечества никто еще не разгадал…

Что такое число Пи? Число ПИ - математическая «константа», выражающая отношение длины окружности к её диаметру. Сначала по невежеству его (это отношение) считали равным трем, что было грубо приближенно, но им хватало. Но когда времена доисторические сменились временами древними (т.е. уже историческими), то удивлению пытливых умов не было предела: оказалось, что число три весьма неточно выражает это соотношение. С течением времени и развитием наук это число стали полагать равным двадцати двум седьмым.

Английский математик Август де Морган назвал как-то число ПИ “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”. Неутомимые ученые продолжали и продолжали вычислять десятичные знаки числа Пи, что является на самом деле дико нетривиальной задачей, потому что просто так в столбик его не вычислить: число это не только иррациональное, но и трансцендентное (это вот как раз такие числа, которые не вычисляются путем простых уравнений).

В процессе вычислений этих самых знаков было открыто множество разных научных методов и целых наук. Но самое главное – в десятичной части числа пи нет повторений, как в обычной периодической дроби, а число знаков после запятой у него – бесконечно. На сегодняшний день проверено, что в 500 млрд. знаков числа пи повторений действительно нет. Есть основания полагать, что их нет вообще.

Поскольку в последовательности знаков числа пи нет повторений – это значит, что последовательность знаков числа пи подчиняется теории хаоса, точнее, число пи – это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен.

В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых!

В десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!

Ну и что? – спросите вы. А то. Прикиньте: если там есть ваш телефон (а он есть), то ведь там же есть и телефон той девушки, которая не захотела дать вам свой номер. Более того, там есть и номера кредиток, и даже все значения выигрышных номеров завтрашнего тиража лотереи. Да что там, вообще всех лотерей на много тысячелетий вперед. Вопрос в том, как их там отыскать…

Если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания в числе ПИ не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то ВСЕ. В том числе и такие, которые соответствуют выбранной вами книге.

А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны. В том числе и Ваши статьи на сайтах. Получается, что это число (единственное разумное число во Вселенной!) и управляет нашим миром. Надо только рассмотреть побольше знаков, найти нужный участок и расшифровать его. Это чем-то сродни парадоксу со стадом шимпанзе, долбящем по клавиатуре. При достаточно долгом (можно даже оценить это время) эксперименте они напечатают все пьесы Шекспира.

Тут же напрашивается аналогия с периодически появляющимися сообщениями о том, что в Ветхом Завете, якобы, закодированы послания потомкам, поддающиеся прочтению с помощью хитроумных программ. Отметать сходу такую экзотическую особенность Библии не совсем мудро, кабаллисты веками занимаются поиском таких пророчеств, но хотелось бы привести сообщение одного исследователя, который с помощью компьютера нашел в Ветхом завете слова о том, что в Ветхом Завете нет никаких пророчеств. Скорее всего, в очень большом тексте, так же, как и в бесконечных цифрах числа ПИ, можно не только закодировать любую информацию, но и “найти” фразы, изначально не заложенные туда.

Для практики, в пределах Земли достаточно 11 знаков после точки. Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру в числе ПИ после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать число ПИ с четырнадцатью знаками после точки, да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XVII веке были получены 34 знака числа ПИ, избыточные для таких расстояний, а их на данный момент вычислено до 12411-триллионного знака !!!

Отсутствие периодически повторяющихся цифр, а именно, исходя их формулы Длина окружности=Пи*D окружность не замыкается, так как нет конечного числа. Этот факт также может тесно быть связан с спиральным проявлением в нашей жизни …

Есть еще гипотеза о том, что все (или некоторые) универсальные постоянные (постоянная Планка, число Эйлера, универсальная гравитационная постоянная, заряд электрона и т.д.) со временем меняют свои значения, так как меняется кривизна пространства из-за перераспределения материи или по другим, не известным нам причинам.

Рискуя навлечь гнев просвещенного сообщества, можем предположить, что и рассматриваемое сегодня число ПИ, отражающее свойства Вселенной, может со временем меняться. Во всяком случае, никто не может нам запретить заново найти значение числа ПИ, подтвердив (или не подтвердив) имеющиеся значения.

10 интересных фактов про число ПИ

1. История числа насчитывает не одно тысячелетие, почти столько, сколько существует наука математика. Конечно, точное значение числа рассчитали не сразу. Поначалу отношение длины окружности к диаметру считали равным 3. Но с течением времени, когда начала развиваться архитектура, потребовалось более точное измерение. Кстати, число существовало, а вот буквенное обозначение оно получило только в начале XVIII века (1706 год) и происходит от начальных букв двух греческих слов, означающих «окружность» и «периметр». Буквой «π» число наделил математик Джонс, а прочно вошла в математику она уже в 1737 году.

2. В разные эпохи и у разных народов число Пи имело разное значение. Например, в Древнем Египте оно равнялось 3,1604, у индусов оно приобрело значение 3,162, китайцы пользовались числом, равным 3,1459. С течением времени π рассчитывали все точнее, а когда появилась вычислительная техника, то есть компьютер, оно стало насчитывать более 4 миллиардов знаков.

3. Есть легенда, точнее так считают специалисты, что число Пи использовали при строительстве Вавилонской башни. Однако не гнев божий стал причиной ее обрушения, а неправильные расчеты при строительстве. Мол, древние мастера ошиблись. Подобная версия существует касательно храма Соломона.

4. Примечательно, что значение числа Пи пытались вводить даже на уровне государства, то есть посредством закона. В 1897 году в штате Индиана подготовили билль. Согласно документу Пи равнялось 3,2. Однако ученые вовремя вмешались и предотвратили таким образом ошибку. В частности, против билля выступил профессор Пердью, присутствовавший на законодательном собрании.

5. Интересно, что свое имя имеют несколько чисел в бесконечной последовательности Пи. Так, шесть девяток числа Пи носят имя американского физика. Как-то Ричард Фейнман читал лекцию и ошарашил публику замечанием. Он сказал, что хотел бы наизусть выучить цифры числа Пи до шести девяток только для того, чтобы под конец рассказа произнести шесть раз «девять», намекая на то, что его значение рационально. Тогда как на самом деле оно иррационально.

6. Математики всего мира не прекращают вести исследования, связанные с числом Пи. Оно буквально окутано некой тайной. Некоторые теоретики даже полагают, что в нем заключена вселенская истина. Чтобы обмениваться знаниями и новой информацией о Пи, организовали Пи-клуб. Вступить в него непросто, нужно иметь незаурядную память. Так, желающих стать членом клуба экзаменуют: человек должен по памяти рассказать как можно больше знаков числа Пи.

7. Придумали даже различные техники для запоминания числа Пи после запятой. Например, придумывают целые тексты. В них слова имеют то же количество букв, что и соответствующая цифра после запятой. Чтобы еще упростить запоминание такого длинного числа, сочиняют стихи по тому же принципу. Члены Пи-клуба частенько развлекаются таким образом, а заодно тренируют память и сообразительность. Например, такое хобби было у Майка Кейта, который восемнадцать лет назад придумал рассказ, каждое слово в котором равнялось почти четырем тысячам (3834) первых знаков числа Пи.

8. Есть даже люди, поставившие рекорды по запоминанию знаков Пи. Так, в Японии Акира Харагучи наизусть выучил больше восьмидесяти трех тысяч знаков. А вот отечественный рекорд не такой выдающийся. Житель Челябинска сумел наизусть произнести только две с половиной тысячи чисел после запятой числа Пи.

9. День числа Пи отмечают больше четверти века, с 1988 года. Однажды физик из научно-популярного музея в Сан-Франциско Ларри Шоу заметил, что 14 марта по написанию совпадает с числом Пи. В дате месяц и число образуют 3.14.

10. Есть любопытное совпадение. 14 марта родился великий ученый Альберт Эйнштейн, создавший, как известно, теорию относительности.

Сегодня день рождения числа Пи, который, по инициативе американских математиков, отмечается 14 марта в 1 час и 59 минут пополудни. Связано это с более точным значением числа Пи: все мы привыкли считать эту константу как 3,14, но число можно продолжить так: 3, 14159... Переводя это в календарную дату, получаем 03.14, 1:59.

Фото: АиФ/ Надежда Уварова

Профессор кафедры математического и функционального анализа Южно-Уральского государственного университета Владимир Заляпин говорит, что «днём числа Пи» всё же следует считать 22 июля, потому что в европейском формате дат этот день записывается как 22/7, а значение этой дроби приблизительно равно значению Пи.

«История числа, дающего отношение длины окружности к диаметру окружности, уходит в далёкую древность, — рассказывает Заляпин. — Уже шумеры и вавилоняне знали, что это это отношение не зависит от диаметра окружности и является постоянным. Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца Ахмеса (около 1650 года до н. э.). Древние греки, много позаимствовавшие у египтян, внесли свой вклад в развитие этой загадочной величины. По легенде, Архимед был настолько увлечён расчётами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошёл к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ солдат заколол его мечом.

Платон получил довольно точное значение числа Пи для своего времени — 3,146. Лудольф ванн Цейлен провёл большую часть своей жизни над расчётами первых 36 цифр после запятой числа Пи, и они были выгравированы на его надгробной плите после смерти».

Иррациональное и ненормальное

По словам профессора, во все времена погоня за вычислением новых десятичных знаков обуславливалась желанием получить точное значение этого числа. Предполагалось, что число Пи рациональное и, следовательно, может быть выражено простой дробью. А это в корне неверно!

Число Пи популярно ещё и потому, что оно — мистическое. С древних времён существовала религия почитателей константы. Помимо традиционного значения Пи — математической константы (3,1415...), выражающей отношение длины окружности к её диаметру, есть масса других значений цифры. Любопытны такие факты. В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к её длине, то есть ½ Пи.

Если рассчитать длину экватора Земли с использованием числа Пи с точностью до девятого знака, ошибка в расчётах составит всего около 6 мм. Тридцати девяти знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не большей, чем радиус атома водорода!

Изучением Пи занимается в том числе и математический анализ. Фото: АиФ/ Надежда Уварова

Хаос в цифрах

По словам профессора математики, в 1767 году Ламберт установил иррациональность числа Пи, то есть невозможность представить его отношением двух целых. Это означает, что последовательность десятичных знаков числа Пи — это хаос, овеществлённый в цифрах. Иными словами, в «хвосте» десятичных знаков содержится любое число, любая последовательность чисел, любые тексты, которые были, есть и будут, да только извлечь эту информацию не представляется возможным!

«Точное значение числа Пи узнать невозможно, — продолжает Владимир Ильич. — Но попытки эти не оставляются. В 1991 году Чудновские добились новых 2260000000 десятичных знаков константы, а в 1994 году — 4044000000. После этого количество верных знаков числа Пи нарастало лавинообразно».

Мировой рекорд по запоминанию числа Пи у китайца Лю Чао , который сумел запомнить 67890 знаков после запятой без ошибки и воспроизвести их в течение 24 часов и 4 минут.

О «золотом сечении»

Кстати, связь между «пи» и другой удивительной величиной — золотым сечением — на самом деле так и не доказана. Люди давно заметили, что «золотая» пропорция — она же число Фи — и число Пи, делённое на два, различаются между собой меньше, чем на 3% (1,61803398... и 1,57079632...). Однако для математики эти три процента — разница слишком существенная, чтобы считать эти значения тождественными. Точно так же можно сказать, что число Пи и число Фи являются родственниками ещё одной известной постоянной — числа Эйлера, так как корень из него близок к половине числа Пи. Одна вторая Пи — 1, 5708, Фи — 1,6180, корень из Е — 1, 6487.

Это — лишь часть значения Пи. Фото: Скриншот

День рождения Пи

В Южно-Уральском государственном университете день рождения константы отмечают все преподаватели и студенты-математики. Так было всегда — нельзя сказать, что интерес появился лишь в последние годы. Число 3,14 приветствуют даже специальным праздничным концертом!

ЧИСЛО ПИ
Символ ПИ означает отношение длины окружности к ее диаметру. Впервые в этом смысле символ p был использован У. Джонсом в 1707, а Л. Эйлер, приняв это обозначение, ввел его в научный обиход. Еще в древности математикам было известно, что вычисление значения p и площади круга - задачи, тесно связанные между собой. Древние китайцы и древние евреи считали число p равным 3. Значение числа p, равное 3,1605, содержится в древнеегипетском папирусе писца Ахмеса (ок. 1650 до н. э.). Около 225 до н. э. Архимед, используя вписанный и описанный правильные 96-угольники, приближенно вычислил площадь круга с помощью метода, который привел к значению ПИ, заключенному между 31/7 и 310/71. Другое приближенное значение p, эквивалентное обычному десятичному представлению этого числа 3,1416, известно еще со 2 в. Л. ван Цейлен (1540-1610) вычислил значение ПИ с 32 десятичными знаками. К концу 17 в. новые методы математического анализа позволили вычислять значение p множеством различных способов. В 1593 Ф. Виет (1540-1603) вывел формулу

В 1665 Дж. Валлис (1616-1703) доказал, что


В 1658 У. Броункер нашел представление числа p в виде непрерывной дроби


Г.Лейбниц в 1673 опубликовал ряд


Ряды позволяют вычислять значение p с любым числом десятичных знаков. В последние годы с появлением электронных вычислительных машин значение p было найдено более чем с 10 000 знаков. С десятью знаками значение ПИ равно 3,1415926536. Как число, ПИ обладает некоторыми интересными свойствами. Например, его нельзя представить в виде отношения двух целых чисел или периодической десятичной дроби; число ПИ трансцендентно, т.е. непредставимо в виде корня алгебраического уравнения с рациональными коэффициентами. Число ПИ входит во многие математические, физические и технические формулы, в том числе и не имеющие непосредственного отношения к площади круга или длине дуги окружности. Например, площадь эллипса A определяется формулой A = pab, где a и b - длины большой и малой полуосей.

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ЧИСЛО ПИ" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

    ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

    Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

Книги

  • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3)
  • Число имени. Новый взгляд на числа. Нумерология - путь познания (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

Число Пи - одно из самых популярных математических понятий. О нем пишут картины, снимают фильмы, его играют на музыкальных инструментах, ему посвящают стихи и праздники, его ищут и находят в священных текстах.

Кто открыл π?

Кто и когда впервые открыл число π, до сих пор остается загадкой. Известно, что строители древнего Вавилона уже вовсю пользовались им при проектировании. На клинописных табличках, которым тысячи лет, сохранились даже задачи, которые предлагали решить с помощью π. Правда, тогда считалось, что π равно трем. Об этом свидетельствует табличка, найденная в городе Сузы, в двухстах километрах от Вавилона, где число π указывалось как 3 1/8 .

В процессе вычислений π вавилонцы обнаружили, что радиус окружности в качестве хорды входит в нее шесть раз, и поделили круг на 360 градусов. А заодно сделали то же самое с орбитой солнца. Таким образом, они решили считать, что в году 360 дней.

В Древнем Египте π было равно 3,16.
В древней Индии – 3,088.
В Италии на рубеже эпох считали, что π равно 3,125.

В Античности самое раннее упоминание π относится к знаменитой задаче о квадратуре круга, то есть о невозможности при помощи циркуля и линейки построить квадрат, площадь которого равна площади определенной окружности. Архимед приравнивал π к дроби 22/7 .

Ближе всего к точному значению π подошли в Китае. Его вычислил в V веке н. э. знаменитый китайский астроном Цзу Чунь Чжи. Вычислялось π довольно просто. Надо было дважды написать нечетные числа: 11 33 55, а потом, разделив их пополам, поместить первое в знаменатель дроби, а второе – в числитель: 355/113 . Результат совпадает с современными вычислениями π вплоть до седьмого знака.

Почему π – π?

Сейчас даже школьники знают, что число π - математическая константа, равная отношению длины окружности к длине её диаметра и равняется π 3,1415926535 … и далее после запятой – до бесконечности.

Свое обозначение π число обрело сложным путем: сначала этой греческой буквой в 1647 году математик Оутрейд обозвал длину окружности. Он взял первую букву греческого слова περιφέρεια - «переферия». В 1706 году английский преподаватель Уильям Джонс в работе «Обозрение достижений математики» уже называл буквой π отношение длины окружности к ее диаметру. А закрепил название математик XVIII века Леонард Эйлер, перед авторитетом которого остальные склонили головы. Так π стало π.

Уникальность числа

Пи - поистине уникальное число.

1. Ученые считают, что количество знаков в числе π бесконечно. Их последовательность не повторяется. Более того, найти повторения не удастся никому и никогда. Так как число бесконечно, оно может заключать в себе абсолютно все, даже симфонию Рахманинова, Ветхий Завет, ваш номер телефона и год, в котором наступит Апокалипсис.

2. π связано с теорией хаоса. К такому выводу пришли ученые после создания вычислительной программы Бэйли, которая показала, что последовательность чисел в π абсолютно случайна, что соответствует теории.

3. Вычислить число до конца практически невозможно – это заняло бы слишком много времени.

4. π – иррациональное число, то есть его значение нельзя выразить дробью.

5. π – трансцедентное число. Его нельзя получить, произведя какие-либо алгебраические действия над целыми числами.

6. Тридцать девять знаков после запятой в числе π достаточно для того, что вычислить длину окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью в радиус атома водорода.

7. Число π связано с понятием «золотого сечения». В процессе измерений Великой пирамиды в Гизе археологи выяснили, что ее высота относится к длине ее основания, так же как радиус окружности - к ее длине.

Рекорды, связанные с π

В 2010 году сотрудник компании «Yahoo» математик Николас Чже смог вычислить в числе π два квадрильона знаков после запятой (2x10). На это ушло 23 дня, и математику понадобилось множество помощников, которые работали на тысячах компьютеров, объединенных по технологии рассеянных вычислений. Метод позволил произвести расчеты с такой феноменальной скоростью. Чтобы вычислить то же самое на одном компьютере, потребовалось бы больше 500 лет.

Для того, чтобы просто записать все это на бумаге, потребуется бумажная лента больше двух миллиардов километров длиной. Если развернуть такую запись, ее конец выйдет за пределы Солнечной системы.

Китаец Лю Чао установил рекорд по запоминанию последовательности цифр числа π. В течение 24 часов 4 минут Лю Чао назвал 67 890 знаков после запятой, не допустив ни одной ошибки.

У π много поклонников. Его воспроизводят на музыкальных инструментах, и оказывается, что «звучит» оно превосходно. Его запоминают и придумывают для этого различные приемы. Его ради забавы скачивают себе на компьютер и хвастаются друг перед другом, кто больше скачал. Ему ставят памятники. Например, такой памятник есть в Сиэтле. Он находится на ступенях перед зданием Музея искусств.

π используют в украшениях и в интерьере. Ему посвящают стихи, его ищут в святых книгах и на раскопках. Есть даже «Клуб π».
В лучших традициях π, числу посвящен не один, а целых два дня в году! В первый раз День π празднуют 14 марта. Поздравлять друг друга надо ровно в 1час, 59 минут, 26 секунд. Таким образом, дата и время соответствуют первым знакам числа- 3,1415926.

Во второй раз праздник π отмечают 22 июля. Этот день связывают с так называемым «приближенным π», который Архимед записывал дробью.
Обычно в этот день π студенты, школьники и ученые устраивают забавные флэш-мобы и акции. Математики, забавляясь, с помощью π вычисляют законы падающего бутерброда и дарят друг другу шуточные награды.
И между прочим, π в самом деле можно найти в святых книгах. Например, в Библии. И там число π равно… трем.



Понравилась статья? Поделиться с друзьями: