Интенсивность теплового облучения. Тепловое излучение. Потери тепла за счет испарения пропорциональны

ТЕСТЫ.

Тест 3. Микроклимат.

Микроклимат помещений – это состояние внутренней среды здания, которое оказывает как положительное, так и отрицательное воздействие на человека, характеризуется показателями температуры, подвижности и влажности

1. Среднесуточная температура за 2 дня оказалась равной +12 градусов. Какой это период года:

1) теплый, 2) холодный, 3) нельзя определить.

Ответ:

Согласно ГОСТ 30494-96 Холодный период года –период года, характеризующийся средне суточной температурой наружного воздуха, равной 8º С и ниже . Теплый период года –период года, характеризующийся среднесуточной температурой наружного воздуха выше 8º С .

Согласно установленные санитарные правила и нормы (СНиП 23-01-99). Микроклимат производственных помещений достаточно сильно зависит от оценки характера одежды, так как она помогает добиться теплоизоляции и акклиматизироваться организму в разное время года. Теплым сезоном можно назвать температурный режим +10 и выше, а холодным - ниже +10.

2. Потеря тепла за счет конвекции пропорциональна:

Ответ:

Конве́кция (от лат. convectiō - «перенесение») - вид теплообмена, при котором внутренняя энергия передается струями и потоками.

В тех случаях, когда в теплообмене участвуют жидкости или газы, обычно возникают явления конвекции: одновременно с потоком тепла возникают потоки вещества - более нагретые слои всплывают кверху, а менее нагретые опускаются. Такое перемешивание в громадной степени ускоряет процесс теплообмена. В случае, когда твердое тело находится в обтекающем его потоке жидкости или газа, теплообмен также носит конвекционный характер и происходит значительно быстрее, чем в покоящейся среде. Поэтому даже небольшой ветер (сквозняк) приводит к увеличению потерь тепла с поверхности тела.

Отдача организмов тепла зависит от тепловых условий окружающей среды, которые определяются температурой, влажностью, скоростью движения воздуха и лучистой энергией.



Пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным.

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) увеличивает (уменьшает) и другую величину, то такие величины прямо пропорциональны .

3. Потери тепла за счет конвекции обратно пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

Если две величины связаны между собой так, что увеличение (уменьшение) одной пропорционально (во столько же раз) уменьшает (увеличивает) и другую величину, то такие величины обратно пропорциональны .

4. Потери тепла за счет конвекции не зависит от:

1) влажности воздуха, 2) температуре тела, 3) температуре воздуха.

Ответ:

5. Потери тепла за счет испарения пропорциональны:

1) влажности воздуха, 2) температуре тела, 3) плотности воздуха.

Ответ:

Испаре́ние - процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации

6. Потери тепла за счет испарения не зависят:

1) влажности воздуха, 2) площади поверхности тела, 3) температуры воздуха.

Ответ:

7. При нормировании параметров микроклимата учитывается:

1) время года; 2) температура тела; 3) площадь поверхности.

Ответ:

Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или допустимого теплового состояния организма.

Параметрами, характеризующими микроклимат в производственных помещениях, являются:

Температура воздуха, t˚C

Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), t п ˚C

Относительная влажность воздуха, W %

Скорость движения воздуха, V м/с

Интенсивность теплового облучения, P Вт/м 2

8. Какая скорость воздушного потока допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) до 1м/с; 2) до 0,5 м/с; 3) до 0,3 м/с; 4) до 0,1 м/с.

Ответ:

Нервно-эмоциональное напряжение может быть вызвано ответственностью за выполняемую работу, высокими требованиями к качеству сварных соединений, сложностью или необычностью работы, особенно в условиях дефицита времени.

согласно ГОСТ 30494-96 –изменение скорости движения воздуха –не более 0,07 м/с для оптимальных показателей и 0,1 м/с –для допустимых;

9. Какая температура (в градусах Цельсия) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 18-20; 2) 20-22; 3) 22-24 ; 4) 24-26.

Ответ:

Оптимальные и допустимые показатели температуры , относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений должны соответствовать величинам, приведенным в соответствующих документах. В кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением , должны соблюдаться оптимальные величины температуры воздуха (22-24°С) , его относительной влажности (40–60%,) и скорости движения (не более 0,1 м/с).

10. Какая влажность воздуха (в %) допускается при выполнении работ, связанных с нервно-эмоциональным напряжением:

1) 30-40; 2) 40-60; 3) 45-55; 4) 50-60.

Ответ:

11. Какие работы связанных с нервно-эмоциональным напряжением:

1) в кабинете; 2) за столом; 3) в кабине.

Ответ:

Нервно-эмоциональное напряжение - связно с наличием аварийных ситуаций, напряжением внимания и слухового анализатора в условиях шума.

12. Какова интенсивность теплового облучения от нагретых частей оборудования при 15% облучаемого тепла (Вт/м 2):

1) 30; 2) 40; 3) 50; 4) 60.

Ответ:

Интенсивность теплового облучения тела человека - тепловая энергия источника на единицу поверхности тела человека, Вт/м2.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях.

Наибольшую опасность возникновения лучистого тепла представляет расплавленный или нагретый до высоких температур металл. Передача тепла может происходить путем конвекции, теплопроводности и излучения. Перенос тепла осуществляется: при конвекции - движущейся средой (потоками воздуха, пара или жидкости); при теплопроводности - передачей тепла в твердых телах; при излучении - интенсивными инфракрасными лучами, которые непосредственно воздуха не нагревают, но при поглощении их твердыми телами лучистая энергия переходит в тепловую. Нагретые твердые тела становятся источниками теплоты и путем конвекции нагревают воздух в помещении.

Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников

Облучаемая поверхность тела, % Интенсивность теплового облучения, Вт/м2, не более

50 и более 35

не более 25 100

13. Какова интенсивность теплового облучения от нагретых частей оборудования при 40% облучаемого тепла (Вт/м 2):

1) 50; 2) 70; 3) 90; 4) 100.

Ответ:

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м2 при облучении 50% поверхности человека и более, 70 Вт/м2–при облучении 25 .50% поверхности и 100 Вт/м2–при облучении не более 25% поверхности тела.

14. Какова интенсивность теплового облучения от нагретых частей оборудования при 60% облучаемого тепла (Вт/м 2):

1) 80; 2) 90; 3) 100; 4) 110.

Ответ:

15. Какова интенсивность теплового облучения от открытых источников (Вт/м 2):

1) 120; 2) 130; 3) 140; 4) 150.

Ответ:

Интенсивность теплового облучения работающих от открытых источников (нагретого металла, стекла, открытого пламени и др.) не должна превышать 140 Вт/м2, при этом облучению не должно подвергаться более 25% поверхности тела и обязательно использование средств индивидуальной защиты.

16. К какому источнику относится лампа накаливания:

1) открытому; 2) закрытому; 3) ни к какому.

Ответ:

Ла́мпа нака́ливания - искусственный источник света, в котором свет испускает тело накала , нагреваемое электрическим током до высокой температуры. В качестве тела накала чаще всего используется спираль из тугоплавкого металла (чаще всего - вольфрама), либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуумированную колбу, либо колбу, заполненную инертными газами или парами галогенов.

Открытого или закрытого типа. В первом случае лампа и патрон не отделяются от внешней среды, во втором ― ограничены оболочкой. Дополнительный специальный уплотнитель делает возможным использование светильников в помещениях с влажным режимом.

17. Какова наиболее оптимальная температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 30; 2) 35; 3) 40; 4) 45.

Ответ:

Теплозащитные средства должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).

18. Какова максимальная допустимая температура в градусах Цельсия нагретых поверхностей, с которыми должен соприкасаться работник:

1) 35; 2) 40; 3) 45; 4) 50.

Ответ:

Во всех случаях температура нагретых поверхностей технологического оборудования или его ограждающих устройств в целях профилактики типовых травм не должна превышать 45°С .

19. На какое расстояние нужно удалить рабочее место от конструкции, температура которых выше допустимой на 4 градуса:

1) 1м ; 2) 2м; 3) 3м; 4) 4м.

Ответ:

При температуре внутренних поверхностей ограждающих конструкций ниже или выше оптимальных величин температуры воздуха рабочие места должны быть удалены от них на расстояние не менее 1 м .

20. Какие из средств защиты не относятся к индивидуальным:

1) очки; 2) костюмы; 3) экраны; 4) спецодежда.

Ответ:

Средства индивидуальной защиты (СИЗ) - средства, используемые работником для предотвращения или уменьшения воздействия вредных и опасных производственных факторов, а также для защиты от загрязнения. Применяются в тех случаях, когда безопасность работ не может быть обеспечена конструкцией оборудования, организацией производственных процессов, архитектурно-планировочными решениями и средствами коллективной защиты

Статья 212 ТК РФ устанавливает ряд условий, направленных на обеспечение безопасных условий труда. Одно из них - приобретение и выдача работодателем сертифицированных специальной одежды, обуви и других средств индивидуальной защиты. При обеспечении работников средствами индивидуальной защиты (далее - СИЗ), средствами для смыва и обезвреживания работодатель исполняет нормы трудового законодательства и защищает работников от воздействия вредных и опасных факторов производства.

Микроклимат

Микроклимат влияет на самочувствие и работоспособность. При увеличении температуры больше 30°С работоспособность уменьшается. Для человека определены максимальные температуры в зависимости от длительности их воздействия и использования средств зашиты.

Основными параметрами, характеризующими метеорологические условия производственной среды, являются:

температура воздуха t, °С;

относительная влажность  ,%;

скорость движения воздуха V, м/с;

барометрическое давление Р, мм. рт.ст.;

интенсивность теплового излучения Ie , Вт/м2.

Эти условия влияют на теплообмен организма человека с окружающей средой. Между организмом и окружающей средой происходит непрерывный процесс теплового обмена, состоящий в передаче вырабатываемого организмом тепла в окружающую среду.

Параметры микроклимата оказывают непосредственное влияние на самочувствие человека и его работоспособность.

При высокой температуре воздуха в помещении кровеносные сосуды кожи расширяются, при этом происходит повышенный приток крови к поверхности тела, и теплоотдача в окружающую среду значительно увеличивается, однако при температуре воздуха более 30° С отдача теплоты конвекцией и излучением в основном прекращается, часть теплоты отдается путем испарения с поверхности кожи. Вместе с влагой организм теряет и соли, играющие важную роль в жизнедеятельности организма. При неблагоприятных условиях потеря жидкости может достигать 8-10 литров за смену, а с ней до 40-50г NаСl (всего в организме около 140 г NаСl). Потеря 28-30 г его ведет к прекращению желудочной секреции, а - больших количеств- к мышечным спазмам и судорогам. При высокой температуре воздуха и дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

Для восстановления водяного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (~ 0,5 % NаСl) газированной питьевой водой из расчета 4-5 л на человека в смену.

При понижении температуры окружающего воздуха реакция организма иная: кровеносные сосуды сужаются, приток крови к поверхности тела замедляется, усиливается теплопродукция и уменьшается отдача тепла. В суженных сосудах происходит периодическое сужение и расширение их просвета, возникают болевые ощущения. Теплопотери возрастают и усиливается возможность переохлаждения. Подвижность воздуха и повышенная влажность усиливают охлаждающие свойства организма.

Высокая относительная влажность неблагоприятно действует на организм и при высоких температурах воздуха, т.к. препятствует испарению пота и способствует перегреванию организма. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени, тем быстрее наступает перегрев. Особенно неблагоприятное воздействие оказывает высокая влажность при температуре больше 31 °С, т.к. при этой температуре практически все тепло (выделяемое) отдается в окружающую среду при испарении пота. При увеличении влажности пот не испаряется, а стекает каплями.

Недостаточная влажность вызывает пересыхание слизистых оболочек дыхательных путей, их растрескивание.

Подвижность воздуха весьма эффективно способствует теплоотдаче, что является положительным явлением при высоких температурах воздуха, но отрицательным при низких температурах.

Барометрическое давление оказывает существенное влияние на такой жизненноважный момент, как процесс дыхания. Наличие кислорода во вдыхаемом воздухе является необходимым, но недостаточным условием для обеспечения жизнедеятельности организма. Интенсивность диффузии кислорода в кровь определяется парциальным давлением кислорода в альвеолярном воздухе (через стенки альвеол кислород посредством диффузии поступает в кровь), которое зависит от барометрического давления вдыхаемого воздуха. Удовлетворительное самочувствие человека сохраняется до высоты ~ 4км, а при дыхании чистым кислородом - до высоты ~ 12км. Выше 4км может наступить кислородное голодание - гипоксия из-за снижения диффузии кислорода из легких в кровь. При работе в условиях избыточного давления снижаются показатели вентиляции легких за счет некоторого урежения частоты дыхания и пульса.

Избыточное давление воздуха приводит к повышению парциального давления кислорода в альвеолярном воздухе и в то же время - к уменьшению объема легких и увеличению силы дыхательной мускулатуры. Для человека очень опасно быстрое изменение давления.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях. Наибольшую опасность возникновения лучистого тепла представляет расплавленный или нагретый до высоких температур металл.

При температуре до +500° С нагретой поверхностью излучаются инфракрасные лучи с длиной волны 0,76 - 740 мкм, а при более высокой температуре наряду с возрастанием инфракрасных лучей появляются видимые световые и ультрафиолетовые лучи. Инфракрасные лучи оказывают на организм человека в основном тепловое действие. Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насыщенность крови, понижается венозное давление, замедляется кровопоток и, как следствие, нарушается деятельность сердечно-сосудистой и нервной систем; повышается температура глубоколежащих тканей, происходит помутнение хрусталика глаза (профессиональная катаракта).

Нормирование микроклимата

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88.

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005-88 “Воздух рабочей зоны” и строительными нормами СН 2.2.4.548-96. Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями. В виде оптимальных и допустимых величин. Оптимальные - создают ощущения теплового комфорта, а допустимые - могут вызывать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжения реакции терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. Нормы установлены для рабочей зоны - пространства высотой до 2 метров над уровнем пола или площадки, на которой находится рабочее место.

Оптимальная относительная влажность воздуха для всех периодов года - 40-60 %.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, “открытое” пламя и др.) не должна превышать 140 Вm/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты тела и глаз.

Допустимая интегральная интенсивность теплового облучения не должна превышать 350Вm/м 2 .

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35Вm/м 2 при облучении 50% поверхности тела и более, 70 Вm/м 2 - при величине облучаемой поверхности от 25 до 50% и 100 Вm/м 2 - при облучении не более 25% поверхности тела.

Допустимая интенсивность теплового облучения в области ультрафиолетового спектра составляет 0,001 Bm/м 2 при длине волны до 0,28 мкм, 0,05 Bm/м 2 при длине волны 0,28-0,32мкм и 10 Bm/м 2 при длине волны 0,32-0,4 мкм.

Предельная температура вдыхаемого воздуха, при которой человек может дышать в течение нескольких минут без специальных средств защиты = 116°С.

Потоотделение мало зависит от недостатка или избытка воды в организме.

Допустимо обезвоживание организма на 2-3%. При 6% - нарушение умственной деятельности и уменьшение остроты зрения, при 15-20% - смерть.

При потоотделении уменьшается содержание солей (до 1%, в т.ч. NaCl 0,4-0,6%). При неблагоприятных условиях потеря жидкости = 8-10 л/смену и в ней до 60г. NaС1 (всего в организме NaCl около 140г.)

При потере соли кровь теряет способность удерживать воду и приводит к нарушению сердечно-сосудистой деятельности.

При высокой температуре и дефиците воды усиленно расходуются углеводы, жиры, разрушаются белки. Для восстановления водяною баланса:

1. Пить подсоленную газированную воду (около 0,5% NaС1) 4-5 л/смену (в горячих цехах).

2. Пить белково-витаминный напиток, холодную воду, чай.

Перегрев организма (гипертермия) - при длительном воздействии высокой температуры. Признаки: головная боль, головокружение, слабость, искажения цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, учащение пульса и дыхания, бледность, расширение зрачков.

Переохлаждение (гипотермия) - при уменьшении температуры, большой подвижности и влажности воздуха. Симптомы: в начале уменьшение частоты дыхания, увеличение объема вдоха, затем неритмичное дыхание, изменение углеводного обмена, мышечная дрожь и холодовая травма.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный периоды года. Теплый период года характеризуется среднесуточной температурой наружного воздуха + 10° С и выше, холодный - ниже + 10° С.

При учете интенсивности труда все виды работ исходя из общих энергозатрат организма делятся натри категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых 50 % и более работающих в соответствующем помещении.

К легким работам (категория I) с затратой энергии до 174 Вт относятся работы, выполняемые сидя или стоя, не требующие систе­матического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию 1а (затраты энергии до 139 Вт) и категорию 16 (затраты энергии 140... 174 Вт).

К работам средней тяжести (категория II) относят работы с затратой энергии 175...232 Вт (категория 2а) и 233...290 Вт (категория 2б). В категорию 2а входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию 2б - работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.).

К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, при обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

20.03.2014

Измерение плотности тепловых потоков, проходящих через ограждающие конструкции. ГОСТ 25380-82

Тепловой поток - количество теплоты, переданное через изотермическую поверхность в единицу времени. Тепловой поток измеряется в ваттах или ккал/ч (1 вт = 0,86 ккал/ч). Тепловой поток, отнесённый к единице изотермической поверхности, называется плотностью теплового потока или тепловой нагрузкой; обозначается обычно q, измеряется в Вт/м 2 или ккал/(м 2 ×ч). Плотность теплового потока - вектор, любая компонента которого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты.

Измерения плотности тепловых потоков, проходящих через ограждающие конструкции, производятся в соответствии с ГОСТ 25380-82 “Здания и сооружения. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции”.

Данным ГОСТ устанавливается метод измерения плотности теплового потока , проходящего через однослойные и многослойные ограждающие конструкции зданий и сооружений – общественных, жилых, сельскохозяйственных и производственных.

В настоящее время при строительстве, приемке и эксплуатации зданий, а также в жилищно-коммунальной отрасли большое внимание уделяют качеству выполненной постройки и отделки помещений, теплоизоляции жилых зданий, а также экономии энергоресурсов.

Важным оценочным параметром при этом служит расход тепла от изолирующих конструкций. Испытания качества тепловой защиты ограждающих конструкций зданий могут выполняться на разных этапах: в период введения зданий в эксплуатацию, на законченных объектах строительства, во время строительства, в период капитального ремонта сооружений, и в период эксплуатации зданий для составления энергетических паспортов зданий, и по жалобам.

Измерения плотности теплового потока должны проводиться при температуре окружающего воздуха от -30 до +50°С и относительной влажности не более 85%.

Измерения плотности теплового потока позволяет оценить расход тепла через ограждающие конструкции и, тем самым, определить теплотехнические качества ограждающих конструкций зданий и сооружений.

Данный стандарт не применим для оценки теплотехнических качеств ограждающих конструкций, пропускающих свет (стекло, пластик и т.д.).

Рассмотрим, на чем основан метод измерения плотности теплового потока. На ограждающей конструкции здания (сооружения) устанавливается пластинка (так называемая «вспомогательная стенка»). Образующейся на этой «вспомогательной стенке» температурный перепад пропорционален в направлении теплового потока его плотности. Перепад температуры преобразуется в электродвижущую силу батарей термопар, которые располагаются на «вспомогательной стенке» и ориентированы параллельно по тепловому потоку, а соединены последовательно по генерируемому сигналу. В совокупности «вспомогательная стенка» и батарея термопар составляют измерительный преобразователь для измерения плотности теплового потока.

По результатам измерения электродвижущей силы батарей термопар рассчитывается плотность теплового потока на предварительно откалиброванных преобразователях.

Схема измерения плотности теплового потока приведена на чертеже.

1 - ограждающая конструкция; 2 -преобразователь теплового потока; 3 - измеритель э.д.с.;

t в, t н - температура внутреннего и наружного воздуха;

τ н, τ в, τ’ в - температура наружной, внутренней поверхностей ограждающей конструкции вблизи и под преобразователем соответственно;

R 1 , R 2 - термическое сопротивление ограждающей конструкции и преобразователя теплового потока;

q 1 , q 2 - плотность теплового потока до и после закрепления преобразователя

Источники инфракрасного излучения. Защита от инфракрасного излучения на рабочих местах

Источником инфракрасного излучения (ИК) является любое нагретое тело, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Длина волны с максимальной энергией теплового излучения определяется по формуле:

λ mах = 2,9-103 / T [мкм] (1)

где Т - абсолютная температура излучающего тела, К.

Инфракрасное излучение подразделяется на три области:

  • коротковолновая (X = 0,7 - 1,4 мкм);
  • средневолновая (к = 1,4 - 3,0 мкм):
  • длинноволновая (к = 3,0 мкм - 1,0 мм).

На организм человека электрические волны ИК диапазона оказывают, в основном, тепловое воздействие. При оценки этого воздействия учитывается:

· длина и интенсивность волны с максимальной энергией;

· площадь излучаемой поверхности;

· длительность облучения в течение рабочего дня;

· продолжительность непрерывного воздействия;

· интенсивность физического труда;

· интенсивность движения воздуха на рабочем месте;

· тип ткани, из которой изготовлена спецодежда;

· индивидуальные особенности организма.

К коротковолновому диапазону относятся лучи с длиной волны λ ≤ 1,4 мкм. Их характеризует способность проникать в ткани организма человека на глубину до нескольких сантиметров. Это воздействие вызывает тяжелые поражения различных органов и тканей человека с отягчающими последствиями. Наблюдается повышение температуры мышечных, легочных и других тканей. В кровеносной и лимфатической системах образуются специфические биологически-активные вещества. Нарушается работа центральной нервной системы.

К средневолновому диапазону относятся лучи с длиной волны λ = 1,4 - 3,0 мкм. Они проникают только в поверхностные слои кожи, а потому их воздействие на организм человека ограничивается повышением температуры подверженных воздействию участков кожи и повышением температуры тела.

Длинноволновой диапазон – лучи с длиной волны λ > 3 мкм. Воздействуя на организм человека, они вызывают наиболее сильное повышение температуры подверженных воздействию участков кожи, что нарушает деятельность дыхательной и сердечнососудистой систем и нарушает тепловой баланс оргазма, приводящий к тепловому удару.

Согласно ГОСТ 12.1.005-88 интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования и осветительных приборов не должна превышать: 35 Вт/м 2 при облучении более 50% поверхности тела; 70 Вт/м 2 при облучении от 25 до 50% поверхности тела; 100 Вт/м 2 при облучении не более 25%> поверхности тела. От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45 °С.

Температура поверхности оборудования, внутри которого температура близка к 100 °С, должна быть не выше 35 °С.

К основным видам защиты от инфракрасного излучения относятся:

1. защита временем;

2. защита расстоянием;

3. экранирование, теплоизоляция или охлаждение горячих поверхностей;

4. увеличение теплоотдачи тела человека;

5. индивидуальные средства защиты;

6. устранение источника тепловыделения.

Различают экраны трех типов:

· непрозрачные;

· прозрачные;

· полупрозрачные.

В непрозрачных экранах при взаимодействии энергии электромагнитных колебаний с веществом экрана происходит ее преобразование в тепловую энергию. Вследствие этого преобразования происходит нагрев экрана и он сам становится источником теплового излучения. Излучение противолежащей источнику поверхностью экрана условно рассматривается как пропущенное излучение источника. Становится возможным рассчитать плотность теплового потока, проходящего через единицу площади экрана.

С прозрачными экранами все обстоит иначе. Излучение, попадающее на поверхность экрана, распределяется внутри него согласно законам геометрической оптики. Этим и объясняется его оптическая прозрачность.

Полупрозрачным экранам присущи свойства как прозрачных, так и непрозрачных.

· теплоотражающие;

· теплопоглощающие;

· теплоотводящие.

На самом деле все экраны в той или иной степени обладают свойством поглощения, отражения или отведения тепла. Поэтому определение экрана к той или иной группе зависит от того, какое свойство наиболее сильно выражено.

Теплоотражающие экраны отличает низкая степень черноты поверхности. Поэтому они отражают большую часть падающих на них лучей.

К теплопоглощающим относятся экраны, у которых материал, из которого они выполнены, имеет малый коэффициент теплопроводности (высокое термическое сопротивление).

В качестве теплоотводящих экранов выступают прозрачные пленки, либо водяные завесы. Также могут быть использованы экраны, находящиеся внутри стеклянных или металлических защитных контуров.

Э = (q – q 3) / q (3)

Э = (t – t 3) / t (4)

q 3 - плотность потока ИК излучения с применением защиты, Вт/м 2 ;

t - температура ИК излучения без применения защиты, °С;

t 3 - темпера­тура ИК излучения с применением защиты, °С.

Используемые контрольно-измерительные приборы

Для измерения плотности тепловых потоков, проходящих через ограждающие конструкции, и проверки свойств теплозащитных экранов нашими специалистами были разработаны приборы серии .

Диапазон измерения плотности теплового потока: от 10 до 250, 500, 2000, 9999 Вт/м 2

Область применения:

· строительство;

· объекты энергетики;

· научные исследования и др.

Измерение плотности теплового потока, как показателя теплоизоляционных свойств различных материалов, приборами серии производят при:

· теплотехнических испытаниях ограждающих конструкций;

· определении тепловых потерь в водяных тепловых сетях;

проведении лабораторных работ в ВУЗах (кафедры «Безопасность жизнедеятельности», «Промышленная экология» и др.).

На рисунке приведен опытный образец стенда "Определение параметров воздуха рабочей зоны и защита от тепловых воздействий" БЖЗ 3 (призводство ООО «Интос+»).

На стенде располагается источник теплового излучения (рефлектор бытовой). Перед источником размещают экраны из разных материалов (металл, ткань и др.). За экраном внутри модели помещения размещается прибор на различных расстояниях от экрана. Над моделью помещения закрепляется вытяжной зонт с вентилятором. Прибор , помимо зонда для измерения плотности теплового потока, оснащен зондом для измерения температуры воздуха внутри модели. В целом стенд представляет собой наглядную модель для оценки эффективности различных видов тепловой защиты и локальной системы вентиляции.

С помощью стенда определяется эффективность защитных свойств экранов в зависимости от материалов, из которых они изготовлены и от расстояния от экрана до источника теплового излучения.

Принцип действия и конструктивное исполнение прибора ИПП-2

Конструктивно прибор выполняется в пластмассовом корпусе. На передней панели прибора располагаются четырех разрядный светодиодный индикатор, кнопки управления; на боковой поверхности располагаются разъёмы для подключения прибора к компьютеру и сетевого адаптера. На верхней панели расположен разъем для подключения первичного преобразователя.

Внешний вид прибора

1 - Светодиодная индикация состояния аккумулятора

2 - Светодиодная индикация нарушения порогов

3 - Индикатор значений измерения

4 - Разъем для подключения зонда измерения

5 , 6 - Кнопки управления

7 - Разъем для подключения к компьютеру

8 - Разъем для подключения сетевого адаптера

Принцип работы

Принцип действия прибора основан на измерении перепада температур на “вспомогательной стенке”. Величина температурного перепада пропорциональна плотности теплового потока. Измерение температурного перепада осуществляется с помощью ленточной термопары, расположенной внутри пластинки зонда, выступающей в роли “вспомогательной стенки”.

Индикация измерений и режимов работы прибора

Прибор осуществляет опрос измерительного зонда, выполняет расчет плотности теплового потока и отображает её значение на светодиодном индикаторе. Интервал опроса зонда составляет около одной секунды.

Регистрация измерений

Данные, полученные от измерительного зонда, записываются в энергонезависимую память блока с определенным периодом. Настройка периода, считывание и просмотр данных осуществляется с помощью программного обеспечения.

Интерфейс связи

С помощью цифрового интерфейса из прибора могут быть считаны текущие значения измерения температуры, накопленные данные измерений, изменены настройки прибора. Измерительный блок может работать с компьютером или иными контроллерами по цифровому интерфейсу RS-232. Скорость обмена по интерфейсу RS-232 настраивается пользователем в пределах от 1200 до 9600 бит/с.

Особенности прибора:

  • возможность установки порогов звуковой и световой сигнализации;
  • передача измеренных значений на компьютер по интерфейсу RS-232.

Достоинством прибора является возможность попеременного подключения к прибору до 8-ми различных зондов теплового потока. Каждый зонд (датчик) имеет свой индивидуальный калибровочный коэффициент (коэффициент преобразования Kq), показывающий, насколько напряжение с датчика изменяется относительно теплового потока. Данный коэффициент используется прибором для построения калибровочной характеристики зонда, по которой определяется текущее измеренное значение теплового потока.

Модификации зондов для измерения плотности теплового потока:

Зонды теплового потока предназначены для проведения измерений поверхностной плотности теплового потока по ГОСТ 25380-92.

Внешний вид зондов теплового потока

1. Зонд теплового потока прижимного типа с пружиной ПТП-ХХХП выпускается в следующих модификациях (в зависимости от диапазона измерения плотности теплового потока):

ПТП-2.0П: от 10 до 2000 Вт/м 2 ;

ПТП-9,9П: от 10 до 9999 Вт/м 2 .

2. Зонд теплового потока в виде «монеты» на гибком кабеле ПТП-2.0.

Диапазон измерения плотности теплового потока: от 10 до 2000 Вт/м 2 .

Модификации зондов для измерения температуры:

Внешний вид зондов для измерения температуры

1. Погружные термопреобразователи ТПП-А-D-L на основе терморезистора Pt1000 (термопреобразователи сопротивления) и термопреобразователи ТХА-А-D-L на основе термопары ХА (термопреобразователи электрические) предназначены для измерения температуры различных жидких и газообразных сред, а также сыпучих материалов.

Диапазон измерения температуры:

Для ТПП-А-D-L: от -50 до +150 °С;

Для ТХА-А-D-L: от -40 до +450 °С.

Габаритные размеры:

D (диаметр): 4, 6 или 8 мм;

L (длина): от 200 до 1000 мм.

2. Термопреобразователь ТХА-А-D1/D2-LП на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры плоской поверхности.

Габаритные размеры:

D1 (диаметр «металлического штыря»): 3 мм;

D2 (диаметр основания – «пятачка»): 8 мм;

L (длина «металлического штыря»): 150 мм.

3. Термопреобразователь ТХА-А-D-LЦ на основе термопары ХА (термопреобразователь электрический) предназначен для измерения температуры цилиндрических поверхностей.

Диапазон измерения температуры: от -40 до +450 °С.

Габаритные размеры:

D (диаметр) – 4 мм;

L (длина «металлического штыря»): 180 мм;

Ширина ленты – 6 мм.

В комплект поставки прибора для измерения плотности тепловой нагрузки среды входят:

1. Измеритель плотности теплового потока (измерительный блок).

2. Зонд для измерения плотности теплового потока.*

3. Зонд для измерения температуры.*

4. Программное обеспечение.**

5. Кабель для подключения к персональному компьютеру. **

6. Свидетельство о калибровке.

7. Руководство по эксплуатации и паспорт на прибор .

8. Паспорт на преобразователи термоэлектрические (температурные зонды).

9. Паспорт на зонд плотности теплового потока.

10. Сетевой адаптер.

* – Диапазоны измерения и конструкция зондов определяются на этапе заказа

** – Позиции поставляются по специальному заказу.

Подготовка прибора к работе и проведение измерений

1. Извлечь прибор из упаковочной тары. Если прибор внесен в теплое помещение из холодного, необходимо дать прибору прогреться до комнатной температуры в течение не менее 2-х часов.

2. Зарядить аккумуляторы, подключив к прибору сетевой адаптер. Время зарядки полностью разряженного аккумулятора не менее 4 часов. В целях увеличения срока службы аккумуляторной батареи рекомендуется раз в месяц проводить полную разрядку до автоматического выключения прибора с последующим полным зарядом.

3. Соединить измерительный блок и измерительный зонд соединительным кабелем.

4. При комплектации прибора диском с программным обеспечением, установить его на компьютер. Подключить прибор к свободному СОМ-порту компьютера соответствующими соединительными кабелями.

5. Включить прибор коротким нажатием кнопки "Выбор".

6. При включении прибора осуществляется самотестирование прибора в течение 5 секунд. При наличии внутренних неисправностей прибор на индикаторе сигнализирует номер неисправности, сопровождаемые звуковым сигналом. После успешного тестирования и завершения загрузки на индикаторе отображаются текущее значение плотности теплового потока. Расшифровка неисправностей тестирования и других ошибок в работе прибора приведена в разделе 6 настоящего руководства по эксплуатации.

7. После использования выключить прибор коротким нажатием кнопки "Выбор".

8. Если предполагается длительное хранение прибора (более 3 месяцев) следует извлечь элементы питания из батарейного отсека.

Ниже приведена схема переключений в режиме “Работа”.

Подготовка и проведение измерений при теплотехнических испытаниях ограждающих конструкций.

1. Измерение плотности тепловых потоков проводят, как правило, с внутренней стороны ограждающих конструкций зданий и сооружений.

Допускается проведение измерений плотности тепловых потоков с наружной стороны ограждающих конструкций в случае невозможности проведения их с внутренней стороны (агрессивная среда, флуктуации параметров воздуха) при условии сохранения устойчивой температуры на поверхности. Контроль условий теплообмена проводят с помощью термощупа и средств для измерения плотности теплового потока: при измерении в течение 10 мин. их показания должны быть в пределах погрешности измерений приборов.

2. Участки поверхности выбирают специфические или характерные для всей испытываемой ограждающей конструкции в зависимости от необходимости измерения локальной или усредненной плотности теплового потока.

Выбранные на ограждающей конструкции участки для измерений должны иметь поверхностный слой из одного материала, одинаковой обработки и состояния поверхности, иметь одинаковые условия по лучистому теплообмену и не должны находиться в непосредственной близости от элементов, которые могут изменить направление и значение тепловых потоков.

3. Участки поверхности ограждающих конструкций, на которые устанавливают преобразователь теплового потока, зачищают до устранения видимых и осязаемых на ощупь шероховатостей.

4. Преобразователь плотно прижимают по всей его поверхности к ограждающей конструкции и закрепляют в этом положении, обеспечивая постоянный контакт преобразователя теплового потока с поверхностью исследуемых участков в течение всех последующих измерений.

При креплении преобразователя между ним и ограждающей конструкцией не допускается образование воздушных зазоров. Для исключения их на участке поверхности в местах измерений наносят тонкий слой технического вазелина, перекрывающий неровности поверхности.

Преобразователь может быть закреплен по его боковой поверхности при помощи раствора строительного гипса, технического вазелина, пластилина, штанги с пружиной и других средств, исключающих искажение теплового потока в зоне измерения.

5. При оперативных измерениях плотности теплового потока незакрепленную поверхность преобразователя склеивают слоем материала или закрашивают краской с той же или близкой степенью черноты с различием Δε ≤ 0,1, что и у материала поверхностного слоя ограждающей конструкции.

6. Отсчетное устройство располагают на расстоянии 5-8 м от места измерения или в соседнем помещении для исключения влияния наблюдателя на значение теплового потока.

7. При использовании приборов для измерения э.д.с., имеющих ограничения по температуре окружающего воздуха, их располагают в помещении с температурой воздуха, допустимой для эксплуатации этих приборов, и подключение к ним преобразователя теплового потока производят при помощи удлинительных проводов.

8. Аппаратуру по п.7 подготавливают к работе в соответствии с инструкцией по эксплуатации соответствующего прибора, в том числе учитывают необходимое время выдержки прибора для установления в нем нового температурного режима.

Подготовка и проведение измерений

(при проведении лабораторных работ на примере лабораторной работы “Исследование средств защиты от инфракрасного излучения”)

Подключить источник ИК излучения к розетке. Включить источник ИК излучения (верхнюю часть) и измеритель плотности теплового потока ИПП-2.

Установить головку измерителя плотности теплового потока на расстоянии 100 мм от источника ИК излучения и определить плотность теплового потока (среднее значение трех - четырех замеров).

Вручную переместить штатив вдоль линейки, установив головку измерителя на расстояниях от источника излучения, указанных в форме таблицы 1, и повторить измерения. Данные замеров занести в форму таблицу 1.

Построить график зависимости плотности потока ИК излучения от расстояния.

Повторить измерения по пп. 1 - 3 с различными защитными экранами (теплоотражающим алюминиевым, теплопоглощающим тканевым, металлическим с зачерненной поверхностью, смешанным - кольчуга). Данные замеров занести в форму таблицы 1. Построить графики зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Форма таблицы 1

Оценить эффективность защитного действия экранов по формуле (3).

Установить защитный экран (по указанию преподавателя), разместить на нем широкую щетку пылесоса. Включить пылесос в режим отбора воздуха, имитируя устройство вытяжной вентиляции, и спустя 2-3 минуты (после установления теплового режима экрана) определить интенсивность теплового излучения на тех же расстояниях, что и в п. 3. Оценить эффективность комбинированной тепловой защиты по формуле (3).

Зависимость интенсивности теплового излучения от расстояния для заданного экрана в режиме вытяжной вентиляции нанести на общий график (см. п. 5).

Определить эффективность защиты, измеряя температуру для заданного экрана с использованием вытяжной вентиляции и без нее по формуле (4).

Построить графики эффективности защиты вытяжной вентиляции и без нее.

Перевести пылесос в режим "воздуходувки" и включить его. Направляя поток воздуха на поверхность заданного защитного экрана (режим душирования), повторить измерения в соответствии с пп. 7 - 10. Сравнить результаты измерений пп. 7-10.

Закрепить шланг пылесоса на одной из стоек и включить пылесос в режиме "воздуходувки", направив поток воздуха почти перпендикулярно тепловому потоку (немного навстречу) - имитация воздушной завесы. С помощью измерителя измерить температуру ИК излучения без "воздуходувки" и с ней.

Построить графики эффективности защиты "воздуходувки" по формуле (4).

Результаты измерений и их интерпретация

(на примере проведения лабораторной работы на тему «Исследование средств защиты от инфракрасного излучения» в одном из технических ВУЗов г. Москвы).

  1. Стол.
  2. Электрокамин ЭКСП-1,0/220.
  3. Стойка для размещения сменных экранов.
  4. Стойка для установки измерительной головки.
  5. Измеритель плотности теплового потока .
  6. Линейка.
  7. Пылесос Тайфун-1200.

Интенсивность (плотность потока) ИК излучения q определяется по формуле:

q = 0,78 х S х (T 4 х 10 -8 - 110) / r 2 [Вт/м 2 ]

где S - площадь излучающей поверхности, м 2 ;

Т - температура излучающей поверхности, К;

r - расстояние от источника излучения, м.

Одним из наиболее распространенных видов защиты от ИК излучения является экранирование излучающих поверхностей.

Различают экраны трех типов:

·непрозрачные;

·прозрачные;

·полупрозрачные.

По принципу действия экраны подразделяются на:

·теплоотражающие;

·теплопоглощающие;

·теплоотводящие.

Эффективность защиты от теплового излучения с помощью экранов Э определяется по формулам:

Э = (q – q 3) / q

где q - плотность потока ИК излучения без применения защиты, Вт/м 2 ;

q3 - плотность потока ИК излучения с применением защиты, Вт/м 2 .

Типы защитных экранов (непрозрачные):

1. Экран смешанный – кольчуга.

Э кольчуга = (1550 – 560) / 1550 = 0,63

2. Экран металлический с зачерненной поверхностью.

Э al+покр. = (1550 – 210) / 1550 = 0,86

3. Экран теплоотражающий алюминиевый.

Э al = (1550 – 10) / 1550 = 0,99

Построим график зависимости плотности потока ИК излучения от расстояния для каждого экрана.

Как мы видим, эффективность защитного действия экранов различается:

1. Минимальное защитное действие у смешанного экрана – кольчуга – 0,63;

2. Экран алюминиевый с зачерненной поверхностью – 0,86;

3. Наибольшим защитным действием обладает экран теплоотражающий алюминиевый – 0,99.

Нормативные ссылки

При оценке теплотехнических качеств ограждающих конструкций зданий и сооружений и установлении реальных расходов тепла через наружные ограждающие конструкции используются следующие основные нормативные документы:

· ГОСТ 25380-82. Метод измерения плотности тепловых потоков, проходящих через ограждающие конструкции.

· При оценке теплотехнических качеств различных средств защиты от инфракрасного излучения используются следующие основные нормативные документы:

· ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования.

· ГОСТ 12.4.123-83. ССБТ. Средства защиты от инфракрасного излучения. Классификация. Общие технические требования.

· ГОСТ 12.4.123-83 «Система стандартов безопасности труда. Средства коллективной защиты от инфракрасных излучений. Общие технические требования».

1. Характеристики теплового излучения.

2. Закон Кирхгофа.

3. Законы излучения черного тела.

4. Излучение Солнца.

5. Физические основы термографии.

6. Светолечение. Лечебное применение ультрафиолета.

7. Основные понятия и формулы.

8. Задачи.

Из всего многообразия электромагнитных излучений, видимых или невидимых человеческим глазом, можно выделить одно, которое присуще всем телам - это тепловое излучение.

Тепловое излучение - электромагнитное излучение, испускаемое веществом и возникающее за счет его внутренней энергии.

Тепловое излучение обусловливается возбуждением частиц вещества при соударениях в процессе теплового движения или ускоренным движением зарядов (колебания ионов кристаллической решетки, тепловое движение свободных электронов и т.д.). Оно возникает при любых температурах и присуще всем телам. Характерной чертой теплового излучения является сплошной спектр.

Интенсивность излучения и спектральный состав зависят от температуры тела, поэтому не всегда тепловое излучение воспринимается глазом как свечение. Например, тела, нагретые до высокой температуры, значительную часть энергии испускают в видимом диапазоне, а при комнатной температуре почти вся энергия испускается в инфракрасной части спектра.

26.1. Характеристики теплового излучения

Энергия, которую теряет тело вследствие теплового излучения, характеризуется следующими величинами.

Поток излучения (Ф) - энергия, излучаемая за единицу времени со всей поверхности тела.

Фактически, это мощность теплового излучения. Размерность потока излучения - [Дж/с = Вт].

Энергетическая светимость (Re) - энергия теплового излучения, испускаемого за единицу времени с единичной поверхности нагретого тела:

Размерность этой характеристики - [Вт/м 2 ].

И поток излучения, и энергетическая светимость зависят от строения вещества и его температуры: Ф = Ф(Т), Re = Re(T).

Распределение энергетической светимости по спектру теплового излучения характеризует ее спектральная плотность. Обозначим энергию теплового излучения, испускаемого единичной поверхностью за 1 с в узком интервале длин волн от λ до λ + dλ, через dRe.

Спектральной плотностью энергетической светимости (r) или испускательной способностью называется отношение энергетической светимости в узком участке спектра (dRe) к ширине этого участка (d λ):

Примерный вид спектральной плотности и энергетичекая светимость (dRe) в интервале волн от λ до λ + dλ, показаны на рис. 26.1.

Рис. 26.1. Спектральная плотность энергетической светимости

Зависимость спектральной плотности энергетической светимости от длины волны называют спектром излучения тела. Знание этой зависимости позволяет рассчитать энергетическую светимость тела в любом диапазоне длин волн:

Тела не только испускают, но и поглощают тепловое излучение. Способность тела к поглощению энергии излучения зависит от его вещества, температуры и длины волны излучения. Поглощательную способность тела характеризует монохроматический коэффициент поглощения α.

Пусть на поверхность тела падает поток монохроматического излучения Φ λ с длиной волны λ. Часть этого потока отражается, а часть поглощается телом. Обозначим величину поглощенного потока Φ λ погл.

Монохроматическим коэффициентом поглощения α λ называется отношение потока излучения, поглощенного данным телом, к величине падающего монохроматического потока:

Монохроматический коэффициент поглощения - величина безразмерная. Его значения лежат между нулем и единицей: 0 ≤ α ≤ 1.

Функция α = α(λ,Τ), выражающая зависимость монохроматического коэффициента поглощения от длины волны и температуры, называется поглощательной способностью тела. Ее вид может быть весьма сложным. Ниже рассмотрены простейшие типы поглощения.

Абсолютно черное тело - такое тело, коэффициент поглощения которого равен единице для всех длин волн: α = 1. Оно поглощает все падающее на него излучение.

По своим поглощательным свойствам к абсолютно черному телу близки сажи, черный бархат, платиновая чернь. Очень хорошей моделью абсолютно черного тела является замкнутая полость с небольшим отверстием (O). Стенки полости зачернены рис. 26.2.

Луч, попавший в это отверстие, после многократных отражений от стенок поглощается практически полностью. Подобные устройства

Рис. 26.2. Модель абсолютно черного тела

применяют в качестве световых эталонов, используют при измерениях высоких температур и т.п.

Спектральная плотность энергетической светимости абсолютно черного тела обозначается ε(λ,Τ). Эта функция играет важнейшую роль в теории теплового излучения. Ее вид сначала был установлен экспериментально, а затем получен теоретически (формула Планка).

Абсолютно белое тело - такое тело, коэффициент поглощения которого равен нулю для всех длин волн: α = 0.

Истинно белых тел в природе нет, однако существуют тела, близкие к ним по свойствам в достаточно широком диапазоне температур и длин волн. Например, зеркало в оптической части спектра отражает почти весь падающий свет.

Серое тело - это тело, для которого коэффициент поглощения не зависит от длины волны: α = const < 1.

Некоторые реальные тела обладают этим свойством в определенном интервале длин волн и температур. Например, «серой» (α = 0,9) можно считать кожу человека в инфракрасной области.

26.2. Закон Кирхгофа

Количественная связь между излучением и поглощением установлена Г. Кирхгофом (1859).

Закон Кирхгофа - отношение испускательной способности тела к его поглощательной способности одинаково для всех тел и равно спектральной плотности энергетической светимости абсолютно черного тела:

Отметим некоторые следствия этого закона.

1. Если тело при данной температуре не поглощает какое-либо излучение, то оно его и не испускает. Действительно, если для

26.3. Законы излучения черного тела

Законы излучения абсолютно черного тела были установлены в следующей последовательности.

В 1879 г. Й. Стефан экспериментально, а в 1884 г. Л. Больцман теоретически определили энергетическую светимость абсолютно черного тела.

Закон Стефана-Больцмана - энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры:

Значения коэффициентов поглощения для некоторых материалов приведены в табл. 26.1.

Таблица 26.1. Коэффициенты поглощения

Немецкий физик В. Вин (1893) установил формулу для длины волны, на которую приходится максимум испускательной способности абсолютно черного тела. Соотношение, которое он получил, было названо его именем.

При повышении температуры максимум испускательной способности смещается влево (рис. 26.3).

Рис. 26.3. Иллюстрация закона смещения Вина

В табл. 26.2 указаны цвета в видимой части спектра, соответствующие излучениям тел при различных температурах.

Таблица 26.2. Цвета нагретых тел

Используя законы Стефана-Больцмана и Вина, можно определить температуры тел посредством измерения излучения этих тел. Например, так определяют температуру поверхности Солнца (~6000 К), температуру в эпицентре взрыва (~10 6 К) и т.д. Общее название этих методов - пирометрия.

В 1900 г. М. Планк получил формулу для расчета испускательной способности абсолютно черного тела теоретически. Для этого ему пришлось отказаться от классических представлений о непрерывности процесса излучения электромагнитных волн. По представлениям Планка, поток излучения состоит из отдельных порций - квантов, энергии которых пропорциональны частотам света:

Из формулы (26.11) можно теоретически получить законы Стефана-Больцмана и Вина.

26.4. Излучение Солнца

В пределах Солнечной системы Солнце - самый мощный источник теплового излучения, обусловливающий жизнь на Земле. Солнечное излучение обладает лечебными свойствами (гелиотерапия), используется как средство закаливания. Оно же может оказывать и негативное воздействие на организм (ожог, тепловой

Спектры солнечного излучения на границе земной атмосферы и у поверхности Земли различны (рис. 26.4).

Рис. 26.4. Спектр солнечного излучения: 1 - на границе атмосферы, 2 - у поверхности Земли

На границе атмосферы спектр Солнца близок к спектру абсолютно черного тела. Максимум испускательной способности приходится на λ 1max = 470 нм (синий цвет).

У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. Эти лучи практически полностью поглощаются озоновым слоем. Максимум испускательной способности приходится на λ 2max = 555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз.

Поток теплового излучения Солнца на границе земной атмосферы определяет солнечная постоянная I.

Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м 2 . В Москве в момент летнего солнцестояния (июнь) - 930 Вт/м 2 .

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. На рис. 26.5 приведены сглаженные кривые распределения энергии солнечного света: I - за пределами атмосферы; II - при положении Солнца в зените; III - при высоте 30° над горизонтом; IV - при условиях, близких к восходу и закату (10° над горизонтом).

Рис. 26.5. Распределение энергии в спектре Солнца при различных высотах над горизонтом

Различные составляющие солнечного спектра по-разному проходят через земную атмосферу. На рисунке 26.6 показана прозрачность атмосферы при большой высоте стояния Солнца.

26.5. Физические основы термографии

Тепловое излучение человека составляет существенную долю его тепловых потерь. Излучательные потери человека равны разности испущенного потока и поглощенного потока излучения окружающей среды. Мощность излучательных потерь рассчитывается по формуле

где S - площадь поверхности; δ - приведенный коэффициент поглощения кожи (одежды), рассматриваемой как серое тело; Т 1 - температура поверхности тела (одежды); Т 0 - температура окружающей среды.

Рассмотрим следующий пример.

Рассчитаем мощность излучательных потерь раздетого человека при температуре окружающей среды 18°С (291 К). Примем: площадь поверхности тела S = 1,5 м 2 ; температура кожи Т 1 = 306 К (33°С). Приведенный коэффициент поглощения кожи найдем по табл. 26.1 = 5,1*10 -8 Вт/м 2 К 4). Подставив эти значения в формулу (26.11), получим

Р = 1,5*5,1*10 -8 * (306 4 - 291 4) ≈122 Вт.

Рис. 26.6. Прозрачность земной атмосферы (в процентах) для различных участков спектра при большой высоте стояния Солнца.

Тепловое излучение человека может быть использовано как диагностический параметр.

Термография - диагностический метод, основанный на измерении и регистрации теплового излучения поверхности тела человека или его отдельных участков.

Распределение температуры на небольшом участке поверхности тела можно определить с помощью специальных жидкокристаллических пленок. Такие пленки чувствительны к небольшим изменениям температуры (меняют цвет). Поэтому на пленке возникает цветной тепловой «портрет» участка тела, на который она наложена.

Более совершенный способ состоит в использовании тепловизоров, преобразующих инфракрасное излучение в видимый свет. Излучение тела с помощью специального объектива проецируется на матрицу тепловизора. После преобразования на экране формируется детальный тепловой портрет. Участки с различными температурами отличаются цветом или интенсивностью. Современные методы позволяют фиксировать различие в температурах до 0,2 градуса.

Тепловые портреты используются в функциональной диагностике. Различные патологии внутренних органов могут образовывать на поверхности кожные зоны с измененной температурой. Обнаружение таких зон указывает на наличие патологии. Термографический метод облегчает дифференциальный диагноз между доброкачественными и злокачественными опухолями. Этот метод является объективным средством контроля за эффективностью терапевтических методов лечения. Так, при термографическом обследовании больных псориазом было установлено, что при наличии выраженной инфильтрации и гиперемии в бляшках отмечается повышение температуры. Снижение температуры до уровня окружающих участков в большинстве случаев свидетельствует о регрессии процесса на коже.

Повышенная температура часто является показателем инфекции. Чтобы определить температуру человека, достаточно взглянуть через инфракрасное устройство на его лицо и шею. Для здоровых людей отношение температуры лба к температуре в области сонной артерии лежит в диапазоне от 0,98 до 1,03. Это отношение и можно использовать при экспресс-диагностике во время эпидемий для проведения карантинных мероприятий.

26.6. Светолечение. Лечебное применение ультрафиолета

Инфракрасное излучение, видимый свет и ультрафиолетовое излучение находят широкое применение в медицине. Напомним диапазоны их длин волн:

Светолечением называют применение в лечебных целях инфракрасного и видимого излучений.

Проникая в ткани, инфракрасные лучи (как и видимые) в месте своего поглощения вызывают выделение теплоты. Глубина проникновения инфракрасных и видимых лучей в кожу показана на рис. 26.7.

Рис. 26.7. Глубина проникновения излучения в кожу

В лечебной практике в качестве источников инфракрасного излучения используются специальные облучатели (рис. 26.8).

Лампа Минина представляет собой лампу накаливания с рефлектором, локализующим излучение в необходимом направлении. Источником излучения служит лампа накаливания мощностью 20-60 Вт из бесцветного или синего стекла.

Светотепловая ванна представляет собой полуцилиндрический каркас, состоящий из двух половин, соединенных подвижно между собой. На внутренней поверхности каркаса, обращенной к пациенту, укреплены лампы накаливания мощностью 40 Вт. В таких ваннах на биологический объект действуют инфракрасное и видимое излучения, а также нагретый воздух, температура которого может достигать 70°С.

Лампа Соллюкс представляет собой мощную лампу накаливания, помещенную в специальный рефлектор на штативе. Источником излучения служит лампа накаливания мощностью 500 Вт (температура вольфрамовой нити 2 800°С, максимум излучения приходится на длину волны 2 мкм).

Рис. 26.8. Облучатели: лампа Минина (а), светотепловая ванна (б), лампа Соллюкс (в)

Лечебное применение ультрафиолета

Ультрафиолетовое излучение, применяемое в медицинских целях, подразделяют на три диапазона:

При поглощении ультрафиолетового излучения в тканях (в коже) происходят различные фотохимические и фотобиологические реакции.

В качестве источников излучения используют лампы высокого давления (дуговые, ртутные, трубчатые), люминесцентные лампы, газоразрядные лампы низкого давления, одной из разновидностей которых являются бактерицидные лампы.

А-излучение оказывает эритемное и загарное действие. Оно используется при лечении многих дерматологических заболеваний. Некоторые химические соединения фурокумаринового ряда (например, псорален) способны сенсибилизировать кожу этих больных к длинноволновому ультрафиолетовому излучению и стимулировать образование в меланоцитах пигмента меланина. Совместное применение данных препаратов с А-излучением является основой метода лечения, называемого фотохимиотерапией или ПУВА-терапией (PUVA: Р - псорален; UVA - ультрафиолетовое излучение зоны А). Облучению подвергают часть или все тело.

В-излучение оказывает ватиминообразующее, антирахитное действие.

С-излучение оказывает бактерицидное действие. При облучении происходит разрушение структуры микроорганизмов и грибов. С-излучение создается специальными бактерицидными лампами (рис. 26.9).

Некоторые лечебные методики используют С-излучение для облучения крови.

Ультрафиолетовое голодание. Ультрафиолетовое излучение необходимо для нормального развития и функционирования организма. Его недостаток приводит к возникновению ряда серьезных заболеваний. С ультрафиолетовым голоданием сталкиваются жители крайнего

Рис. 26.9. Бактерицидный облучатель (а), облучатель для носоглотки (б)

Севера, рабочие горнорудной промышленности, метрополитена, жители крупных городов. В городах недостаток ультрафиолета связан с загрязнением атмосферного воздуха пылью, дымом, газами, задерживающими УФ-часть солнечного спектра. Окна помещений не пропускают УФ-лучи с длиной волны λ < 310 нм. Значительно снижают УФ-поток загрязненные стекла и занавеси (тюлевые занавески снижают УФ-излучение на 20 %). Поэтому на многих производствах и в быту наблюдается так называемая «биологическая полутьма». В первую очередь страдают дети (возрастает вероятность заболевания рахитом).

Вредность ультрафиолетового облучения

Воздействие избыточных доз ультрафиолетового облучения на организм в целом и на отдельные его органы приводит к возникновению ряда патологий. В первую очередь это относится к последствиям бесконтрольного загорания: ожоги, пигментные пятна, повреждение глаз - развитие фотоофтальмии. Действие ультрафиолета на глаз подобно эритеме, так как оно связано с разложением протеинов в клетках роговой и слизистой оболочек глаза. Живые клетки кожи человека защищены от деструктивного действия УФ лучей «мертвы-

ми» клетками рогового слоя кожи. Глаза лишены этой защиты, поэтому при значительной дозе облучения глаз после скрытого периода развивается воспаление роговой (кератит) и слизистой (конъюнктивит) оболочек глаза. Этот эффект обусловлен лучами с длиной волны меньше 310 нм. Необходимо защищать глаз от таких лучей. Особо следует рассмотривать бластомогенное действие УФ-радиации, приводящее к развитию рака кожи.

26.7. Основные понятия и формулы

Продолжение таблицы

Окончание таблицы

26.8. Задачи

2. Определить, во сколько раз отличаются энергетические светимости участков поверхности тела человека, имеющих температуры 34 и 33°С соответственно?

3. При диагностике методом термографии опухоли молочной железы пациентке дают выпить раствор глюкозы. Через некоторое время регистрируют тепловое излучение поверхности тела. Клетки опухолевой ткани интенсивно поглощают глюкозу, в результате чего их теплопродукция возрастает. На сколько градусов при этом меняется температура участка кожи над опухолью, если излучение с поверхности возрастает на 1% (в 1,01 раза)? Начальная температура участка тела равна 37°С.

6. Насколько увеличилась температура тела человека, если поток излучения с поверхности тела возрос на 4%? Начальная температура тела равна 35°С.

7. В комнате стоят два одинаковых чайника, содержащие равные массы воды при 90°С. Один из них никелированный, а другой темный. Какой из чайников быстрее остынет? Почему?

Решение

По закону Кирхгофа отношение испускательной и поглощательной способностей одинаково у всех тел. Никелированный чайник отражает почти весь свет. Следовательно, его поглощательная способность мала. Соответственно мала и испускательная способность.

Ответ: быстрее остынет темный чайник.

8. Для уничтожения жучков-вредителей зерно подвергают действию инфракрасного облучения. Почему жучки погибают, а зерно нет?

Ответ: жучки имеют черный цвет, поэтому интенсивно поглощают инфракрасное излучение и гибнут.

9. Нагревая кусок стали, мы при температуре 800°С будем наблюдать яркое вишнево-красное каление, но прозрачный стерженек плавленого кварца при той же температуре совсем не светится. Почему?

Решение

См. задачу 7. Прозрачное тело поглощает малую часть света. Поэтому и его испускательная способность мала.

Ответ: прозрачное тело практически не излучает, даже будучи сильно нагретым.

10. Почему в холодную погоду многие животные спят, свернувшись в клубок?

Ответ: при этом уменьшается открытая поверхность тела и соответственно уменьшаются потери на излучение.

В существующей нормативно-технической документации нормируются следующие величины:

    интенсивность теплового облучения, Вт/м 2 ;

    температура воздуха рабочей зоны, о С;

    температура нагретых поверхностей технологического оборудования, о С;

    интегральный показатель тепловой нагрузки среды – ТНС-индекс, о С.

1. Интенсивность теплового облучения q пад, Вт/м 2 зависит от доли открытой поверхности тела человека S .

Согласно ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать значений, приведенных в таблице 2.1.

Таблица 2.1 – Зависимость интенсивности теплового облучения от доли открытой поверхности тела человека S

q пад, Вт/м 2

В любом случае облученность работающих открытыми источниками теплового излучения (нагретый металл, стекло, «открытое пламя» и т.п.) не должна превышать 140 Вт/м 2 , облучению не должно подвергаться более 0,25 поверхности тела при обязательном использовании средств индивидуальной защиты.

2. При наличии теплового облучения температура воздуха в соответствии с ГОСТ 12.1.005-88 не должна превышать на постоянных рабочих местах верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах – верхние границы допустимых значений для постоянных рабочих мест (см. таблицу 2.2).

Таблица 2.2 – Допустимые значения температуры воздуха рабочей зоны, о С при наличии теплового излучения

3. В целях профилактики тепловых травм температура наружных поверхностей технологического оборудования или ограждающих его устройств не должна превышать 45 °С (ГОСТ 12.1.005-88 ).

В соответствии с ГОСТ 12.4.123-83 «Средства коллективной защиты от инфракрасных излучений. Общие технические требования» средства защиты должны обеспечивать температуру поверхностей оборудования не выше 35 °С при температуре внутри теплоисточника до 100 °С и не выше 45 °С при температуре внутри теплоисточника выше 100 °С.

4. ТНС-индекс рекомендуется использовать для оценки сочетанного воздействия параметров микроклимата, в целях осуществления мероприятий по защите работающих от возможного перегревания на рабочих местах, на которых скорость движения воздуха не превышает 0,6 м/с, а интенсивность теплового облучения – 1200 Вт/м 2 (см. лабораторную работу №1).

      1. Меры защиты

Основные мероприятия по снижению опасности воздействия ИК излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защиту временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Cогласно ГОСТ 12.4.011-89 «Средства защиты работающих. Общие требования и классификация» средства промышленной теплозащиты должны удовлетворять следующим требованиям:

    обеспечивать оптимальный теплообмен организма работника со средой обитания;

    обеспечивать необходимую подвижность воздуха (повышение доли конвективной теплоотдачи) с целью достижения комфортных условий;

    иметь максимальную эффективность теплозащиты и обеспечивать удобство эксплуатации.

Все средства защиты работающих в зависимости от характера их применения подразделяют на две категории: коллективные и индивидуальные.

В соответствии с ГОСТ 12.4.011-89 и ГОСТ 12.4.123-83 к коллективным средствам теплозащиты относятся устройства: оградительные (экраны, щиты и др.); герметизирующие; теплоизолирующие; вентиляционные (воздушное душирование, аэрация и др.); автоматического контроля и сигнализации; дистанционного управления; знаки безопасности.

Выбор теплозащитных средств в каждом случае должен осуществляться по максимальным значениям эффективности с учетом требований эргономики, технической эстетики, безопасности для данного процесса или вида работ и технико-экономического обоснования.

Механизация и автоматизация производственных процессов, дистанционное управление и наблюдение дают возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования . Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное. Кроме улучшения условий труда тепловая изоляция уменьшает тепловые потери оборудования, снижает расход топлива (электроэнергии или пара) и приводит к увеличению производительности агрегатов.

Теплоизоляция конструктивно может быть мастичной , оберточной , засыпной , с использованием штучных и формовочных изделий (кирпичи и др.) и смешанной .

В настоящее время известно много различных видов теплоизоляционных материалов. К неорганическим материалам относятся: асбест, асбоцемент, вермикулит, керамзит, минеральная вата и войлок, стекловата и стеклоткань, ячеистый бетон и др. Органическими изоляционными материалами являются древесные опилки, пробковые, древесноволокнистые и торфоизоляционные плиты, пенопласт и др. При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место.

По способу крепления на объекте экраны подразделяют на: съемные и встроенные .

По принципу действия экраны подразделяются на: теплоотражающие , теплопоглощающие, теплоотводящие и комбинированные . Отнесение экрана к той или иной группе производится в зависимости от того, какая способность экрана более выражена.

По степени прозрачности экраны делят на: непрозрачные (светопропускание менее 40%), полупрозрачные (светопропускание 40–75%) и прозрачные (светопропускание более 75%). В непрозрачных экранах энергия поглощенных электромагнитных волн превращается в тепловую энергию. Экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное экраном излучение источника теплового излучения. К этому классу относят металлические водоохлаждаемые и футерованные асбестовые, альфолиевые (из алюминиевой фольги), алюминиевые экраны.

В прозрачных экранах пропущенное излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Прозрачные экраны применяются для смотровых проемов пультов и кабин управления, щитков и т.д. Этот класс составляют экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного; пленочные водяные завесы, свободные и стекающие по стеклу; вододисперсные завесы. Водяные завесы поглощают поток тепла до 80 % без существенного ухудшения видимости. Высокой эффективностью обладают аквариальные экраны (до 93 %), представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15 – 20 мм. Вододисперсная завеса представляет собой плоскую воздушную струю со взвешенными в ней капельками воды (эффективность около 70 %).

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой; для повышения эффективности все эти экраны могут орошаться водяной пленкой.

Примеры характеристик конструкций оградительных устройств (экранов) приведены в Приложении 2.1.

В производственных помещениях для ассимиляции избыточной теплоты предусматривают естественную вентиляцию (аэрацию).

Аэрация – организованный естественный воздухообмен, осуществляемый за счет теплового и ветрового напоров.

При интенсивности теплового облучения на открытых рабочих местах 350 Вт/м 2 и выше и температуре воздуха не ниже 27 – 28 °С при проведении средней и тяжелой физической работы применяют зональное мелкодисперсное распыление воды . Водяная пыль, попадая на одежду и тело работающего, испаряясь, способствует охлаждению, а вдыхаемая водяная пыль предохраняет слизистые оболочки дыхательных путей от высыхания.

Для создания комфортных микроклиматических условий в ограниченном объеме (например, на рабочем месте) применяются: воздушные оазисы, воздушные завесы и воздушные души.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого часть рабочего помещения ограничивают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с.

Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку.

При воздействии на работающего теплового облучения интенсивностью 350 Вт/м 2 и более, а также 175 – 350 Вт/м 2 при площади излучающих поверхностей в пределах рабочего места более 0,2 м 2 применяют воздушное душирование. Воздушное душирование представляет собой поток воздуха, имеющий заданные параметры (температуру, скорость движения, иногда влажность), подаваемый непосредственно на рабочее место. Ось воздушного потока направляют на грудь человека горизонтально или под углом 45°. Охлаждающий эффект воздушного душирования зависит от разности температур тела работающего и потока воздуха, а также от скорости обтекания воздухом тела человека.

Эффективность любого теплозащитного устройства оценивается как:

где Э – эффективность теплозащитного устройства, %;

q пад – тепловой поток падающий на теплозащитное устройство (экран) от источника, Вт/м 2 ;

q проп – тепловой поток пропущенный теплозащитным устройством (экраном), Вт/м 2 .

К основным организационным мерам защиты относят:

Тепловая характеристика помещения устанавливается в зависимости от величины избытков явной теплоты.

Избытки явной теплоты Q яв (теплонапряженность) , Вт – тепловые потоки от всех источников (тепло, выделяемое печами, нагретым металлом, электрооборудованием, людьми, отопительными приборами, солнечным нагревом) за вычетом теплопотерь через ограждения при расчетных параметрах наружного воздуха.

Производственные помещения делят на: помещения с незначительными избытками явной теплоты с теплонапряженностью Q яв ≤23 Вт/м 3 =84 кДж/(м 3 ч) и помещения с избытками явного тепла с Q яв >23 Вт/м 3 (горячие цеха – доменные, сталеплавильные, прокатные и др.).

    организацию дополнительных перерывов в работе (график перерывов разрабатывается применительно к конкретным условиям работы и в зависимости от тяжести работ, с учетом того, что частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные).

    защиту временем во избежание чрезмерного общего перегревания и локального повреждения (ожог). Регламентируют продолжительность периодов непрерывного ИК облучения человека и пауз между ними в соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» .

    организацию мест отдыха (где обеспечивают благоприятные условия);

    регулярные медосмотры для своевременного лечения.

К индивидуальным средствам относятся специальная одежда, фартуки, обувь, рукавицы. При защите от тепловых излучений спецодежда выполняется воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно). Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз – очки темные или с прозрачным слоем металла, маски с откидным экраном.

При кратковременных работах в условиях высоких температур (тушении пожаров, ремонте металлургических печей), где температура достигает 80 – 100 °С, большое значение имеет тепловая тренировка. Устойчивость к высоким температурам может быть в некоторой степени повышена лечебно-профилактическими мероприятиями : использование фармакологических средств (дибазола, аскорбиновой кислоты, смеси этих веществ и глюкозы), вдыхание кислорода, аэроионизация.

Для ослабления воздействия тепловых излучений на организм человека устанавливают рациональный питьевой режим – снабжают рабочих горячих цехов подсоленной газированной водой, белково-витаминным напитком и т.п.



Понравилась статья? Поделиться с друзьями: