Предмет физики. Почему изучение физики так важно для человечества? Что это такое — измерение показателей и зачем нужны эти измерения

Тема 1

« Предмет и метод физики. Измерения. Физические величины.»

Первые научные представления возникли давно - по-видимому, на самых ранних этапах истории человечества, отраженной в письменных источниках. Однако, физика как наука в своем современном виде берет начало со времен Галилео Галилея (1Галилей и его последователь Исаак Ньютон (1совершили революцию в научном познании. Галилей предложил в качестве основного метода исследования метод экспериментального познания, а Ньютон сформулировал первые законченные физические теории (классическая механика, классическая оптика, теория тяготения).

В своем историческом развитии физика прошла 3 этапа (смотри диаграмму).

Революционный переход от одного этапа к следующему связан со сломом старых базовых представлений об окружающем мире в связи с полученными новыми экспериментальными результатами.

Слово physis в буквальном переводе означает природа, то есть сущность, внутреннее основное свойство явления, какая-то скрытая закономерность, определяющая протекание, ход явления.

Физика - это наука о наиболее простых и вместе с тем наиболее общих свойствах тел и явлений. Физика - фундамент естествознания.

Связь физики со всеми остальными науками представлена на диаграмме.

В основании физики (как и любой естественной науки) лежат утверждения о материальности мира и существовании объективных устойчивых причинно-следственных связей между явлениями. Физика объективна, так как изучает реальные природные явления, но одновременно и субъективна вследствие сущности процесса познания, как отражения действительности.

По современным представлениям все, что нас окружает, представляет собой комбинацию небольшого количества так называемых элементарных частиц, между которыми возможны 4 различных вида взаимодействий. Элементарные частицы характеризуются 4 числами (квантовыми зарядами), значения которых определяют в какой вид взаимодействия может вступать рассматриваемая элементарная частица (Таблица 1.1).

Заряды

Взаимодействия

массовый

гравитационное

электрический

электромагнтное

барионный

лептонный

Такая формулировка обладает двумя важными свойствами:

Адекватно описывает наши современные представления об окружающем мире;

Достаточно обтекаема и с вряд ли придет в противоречие с новыми экспериментальными фактами.

Дадим краткие пояснения незнакомым понятиям, используемым в этих утверждениях. Почему мы говорим о так называемых элементарных частицах? Элементарные частицы в точном значении этого термина – первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. Однако, большинство известных элементарных частиц не удовлетворяют строгому определению элементарности, поскольку являются составными системами. Согласно модели Цвейга и Гелл-Мана структурными единицами таких частиц являются кварки . В свободном состоянии кварки не наблюдаются. Необычное название «кварки» было заимствовано из книги Джеймса Джойса «Поминки по Финнигану», где встречается словосочетание «три кварка», которое слышится герою романа в кошмарном бреду. В настоящее время известно более 350 элементарных частиц, в основном нестабильных и их число постоянно растет.

Вы встречались с проявлением трех из этих взаимодействий, когда изучали явление радиоактивного распада (смотри схему внизу).

Вы ранее уже сталкивались с таким проявлением сильного взаимодействия как ядерные силы, удерживающие протоны и нейтроны внутри атомного ядра. Сильное взаимодействие вызывает процессы, протекающие с наибольшей, по сравнению с другими процессами, интенсивностью и приводит к самой сильной связи элементарных частиц. В отличие от гравитационного и электромагнитного сильное взаимодействие является короткодействующим: его радиус

Характерные времена сильного взаимодействия

Краткая хронология изучения сильного взаимодействия

1911 – атомное ядро

1932 – протонно-нейтронное строение

(, В. Гейзенберг)

1935 – пи-мезон (Юкава)

1964 – кварки (М. Гелл-Манн, Г. Цвейг)

70-е XX века - квантовая хромодинамика

80-е XX века - теория великого объединения

https://pandia.ru/text/78/486/images/image007_3.gif" width="47 height=21" height="21">Слабое взаимодействие ответственно за распады элементарных частиц, стабильных относительно сильного и электромагнитного взаимодействий. Эффективный радиус слабого взаимодействия не превышает Поэтому на больших расстояния оно существенно слабее электромагнитного, которое в свою очередь до расстояний меньше 1 Ферми слабее сильного взаимодействия. На расстояниях, меньших слабые и электромагнитные взаимодействия образуют единое электрослабое взаимодействие. Слабое взаимодействие вызывает очень медленно протекающие процессы с элементарными частицами, в том числе распады квазистабильных элементарных частиц, времена жизни которых лежат в диапазоне Несмотря на малую величину слабое взаимодействие играет очень важную роль в природе. В частности процесс превращения протона в нейтрон, в результате которого 4 протона превращаются в ядро гелия (основной источник выделения энергии внутри Солнца) обусловлен слабым взаимодействием.

Может ли быть открыто пятое взаимодействие? Однозначного ответа не существует. Однако, по современным представлениям все четыре вида взаимодействия являются различными проявлениями одного единого взаимодействия. Это утверждение составляет суть теории великого объединения .

Теперь обсудим, как формируется научное знание об окружающем нас мире.

Знанием называют те сведения, опираясь на которые мы можем уверенно планировать нашу деятельность на пути к цели, и деятельность эта непременно приводит к успеху. Чем сложнее цель, тем больше знания требуется для ее достижения.

Научное знание формируется в результате синтеза двух присущих человеку элементов деятельности: творчества и регулярного освоения окружающего пространства с помощью метода проб и ошибок (смотри диаграмму).

https://pandia.ru/text/78/486/images/image010_2.jpg" width="553" height="172 src=">

Физический закон - это долго живущая и «заслуженная» физическая теория. Только такие попадают в учебники и изучаются в общеобразовательных курсах.

Если опыт не подтвердил предсказание, то весь процесс необходимо начинать сначала.

« Хорошая » физическая теория должна удовлетворять следующим требованиям:

1) должна исходить из небольшого количества фундаментальных положений;

2) должна быть достаточно общей;

3) должна быть точной;

4) должна допускать возможность усовершенствования.

Ценность физической теории определяется тем насколько точно можно установить тот предел, за которым она несправедлива. Эксперимент не может подтвердить теорию, а может ее только опровергнуть .

Процесс познания может идти только через построение модели , что связано с субъективной стороной этого процесса (неполнота информации, многообразие любого явления, облегчение освоения с помощью конкретных образов).

Модель в науке - это не увеличенная или уменьшенная копия предмета, а картина явления, освобожденная от не существенных для поставленной задачи деталей.

Модели подразделяются на механические и математические.

Примеры: материальная точка, атом, абсолютно твердое тело.

Как правило, для большинства понятий процесс развития моделей идет путем постепенного усложнения от механических к математическим.

Рассмотрим этот процесс на примере понятия атома. Перечислим основные модели.

Шарик (атом древних и классической физики)

Шарик с крючком

Атом Томсона

Планетарная модель (Резерфорд)

Модель Бора

Уравнение Шредингера

https://pandia.ru/text/78/486/images/image012.gif" width="240" height="44">

Модель атома в виде твердого неделимого шарика при всей кажущейся с точки зрения сегодняшних представлений нелепости позволила, например, в рамках кинетической теории газов получить все основные газовые законы.

Открытие в 1897 году электрона привело к созданию Дж. Дж. Томпсоном модели, которую обычно называют «пудинг с изюмом» (смотри рисунок внизу).

https://pandia.ru/text/78/486/images/image014.gif" width="204" height="246">

Согласно этой модели в положительно заряженном «тесте» плавают отрицательно заряженные изюминки – электроны. Модель объясняла электронейтральность атома, одновременное возникновение свободного электрона и положительно заряженного иона. Однако, результаты опыта Резерфорда по рассеянию альфа частиц принципиально изменили представление о строении атома.

На представленной ниже картинке изображена схема установки в опыте Резерфорда.

В рамках модели Томпсона было невозможно объяснить сильное отклонение траектории движения альфа частиц и, поэтому, возникло понятие атомного ядра . Проведенные расчеты позволили определить размеры ядра, они оказались порядка одного Ферми. Таким образом, на смену модели Томпсона пришла планетарная модель Резерфорда (смотри картинку внизу).

Это типично механическая модель, поскольку атом представляется как аналог солнечной системы: вокруг ядра – Солнца по круговым траекториям движутся планеты – электроны. Известный советский поэт Валерий Брюсов так отозвался об этом открытии

Еще быть может, каждый атом –

Вселенная, где сто планет;

Там всё, что здесь, в объёме сжатом,

Но также то, чего здесь нет.

С момента возникновения планетарная модель подвергалась серьёзной критике в связи с её нестабильностью. Движущийся по замкнутой орбите электрон должен излучать электромагнитные волны и, следовательно, упасть на ядро. Точные расчеты показывают, что максимальное время жизни атома в модели Резерфорда не больше 20 минут. Великий датский физик Нильс Бор для спасения идеи атомного ядра создал новую модель атома, носящую его имя. Она основана на двух основных положениях (постулатах Бора):

Атомы могут длительное время находится только в определенных, так называемых стационарных состояниях. Энергии стационарных состояний образуют дискретный спектр. Иначе говоря, возможны только круговые орбиты с радиусами, задаваемыми соотношением

https://pandia.ru/text/78/486/images/image018.gif" width="144" height="49">

где n – целое число.

При переходе из одного начального квантового состояния в другое происходит излучение или поглощение кванта света (смотри рисунок).

https://pandia.ru/text/78/486/images/image020.gif" width="240" height="238">

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциальное уравнение в частных производных относительно волновой функции Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который пропорционален вероятности нахождения частицы (электрона) в данной точке пространства. Иначе говоря, электрон при своем движении как бы «размазан» по всему объему, образуя электронное облако, плотность которого характеризует вероятности нахождения электрона в различных точках объема атома (смотри рисунки снизу).

https://pandia.ru/text/78/486/images/image025_0.gif" width="379" height="205">

К сожалению, язык, которым мы пользуемся в нашей повседневной жизни, непригоден для описания процессов, происходящих в глубинах материи (применяются оень абстрактные модели). Физики «беседуют» с Природой на языке математики с помощью чисел, геометрических фигур и линий, уравнений, таблиц, функций и т. д. Такой язык обладает удивительной предсказательной силой: оперируя формулами, можно получить следствия (как в математике), оценить результат количественно и проверить затем опытом справедливость предсказания. За изучение явлений, которые нельзя описать на языке физики из-за неопределенности понятий, невозможности определить процесс измерения, физики просто не берутся.

История развития физики показала, что разумное использование математики неизменно приводило к мощному прогрессу в исследовании природы, а попытки абсолютизировать какой-то математический аппарат как единственно пригодный ведут к застою.

Физика как любая наука может ответить только на вопрос «Как?», но не на вопрос «Почему?».

Наконец, рассмотрим заключительную часть темы №1 о физических величинах.

Физическое понятие, отражающее какое-то свойство тел и явлений и выражаемое числом в процессе измерения называется физической величиной.

Физические величины в зависимости от способа их представления подразделяются на скалярные, векторные, тензорные и т. д. (смотри Таблицу 1.2).

Таблица 1.2

величины

примеры

скалярные

температура, объем, давление

векторные

скорость, ускорение, напряженность

тензорные

давление в двигающейся жидкости

https://pandia.ru/text/78/486/images/image027_0.gif" width="73" height="75 src=">

Вектором называется упорядоченный набор чисел (смотри иллюстрацию сверху). Тензорные физические величины записываются с помощью матриц.

Также все физические величины можно разделить на основные и производные от них. К основным относятся единицы измерения массы, электрического заряда (основные характеристики материи, обуславливающие гравитационное и электромагнитное взаимодействие), длины и времени (так как отражают фундаментальные свойства материи и ее атрибутов – пространства и времени), а также температуры, количества вещества и силы света. Для установления производных единиц используют физические законы, связывающие их с основными единицами.

В настоящее время обязательна к применению в научной и учебной литературе Международная система единиц (СИ ), где в качестве основных единиц используются килограмм, Ампер, метр, секунда, Кельвин, моль и Кандела. Причиной замены в качестве основной единицы Кулона (электрический заряд) на Ампер (сила электрического тока) чисто техническая: реализация эталона в 1 Кулон в отличие от 1 Ампера практически невозможна, а сами единицы связаны простым соотношением:

Зачем человеку нужны измерения

Измерения - одно из важнейших дел в современной жизни. Но не всегда

было так. Когда первобытный человек убивал медведя в неравном поединке он, конечно, радовался, если тот оказывался достаточно большим. Это обещало сытую жизнь ему и всему племени на долгое время. Но он не тащил тушу медведя на весы: в то время никаких весов не было. Не было особой нужды в измерениях и когда человек делал каменный топор: технических условий на такие топоры не существовало и все определялось размером подходящего камня, который удавалась найти. Все делалось на глаз, так, как подсказывало чутье мастера.

Позднее люди стали жить большими группами. Начался обмен товарами, перешедшими потом в торговлю, возникли первые государства. Тогда появилась нужда в измерениях. Царские песцы должны были знать, какова площадь поля у каждого крестьянина. Этим определялось, сколько зерна он должен отдать царю. Надо было измерить урожай с каждого поля, а при продаже льняного мяса, вина и других жидкостей – объем проданного товара. Когда начали строить корабли, нужно было заранее наметить правильные размеры: иначе корабль затонул бы. И уж, конечно, не могли обойтись без измерений древние строители пирамид, дворцов и храмов, до сих пор поражают нас своей соразмерностью и красотой.

СТАРИННЫЕ РУССКИЕ МЕРЫ.

Русский народ создал свою собственную систему мер. Памятники X века говорят не только о существовании системы мер в Киевской Руси, но и государственном надзоре за их правильностью. Надзор этот был возложен на духовенство. В одном из уставов князя Владимира Святославовича говорится:

« …еже искони установлено есть и поручено есть епископам градские и везде всякие мерила и спуды и весы... блюсти без пакости, ни умножити, ни умалити...» (...издавна установлено и поручено епископам наблюдать за правильностью мер... не допускать ни умаления, ни увеличения их...). Вызвана была эта необходимость надзора потребностями торговли как внутри страны, так и со странами Запада (Византия, Рим, позднее германские города) и Востока (Средняя Азия, Персия, Индия). На церковной площади происходили базары, в церкви стояли лари для хранения договоров по торговым сделкам, при церквах находились верные весы и меры, в подвалах церквей хранились товары. Взвешивания производились в присутствии представителей духовенства, получавших за это пошлину в пользу церкви

Меры длины

Древнейшими из них являются локоть и сажень. Точной первоначальной длинны той и другой меры мы не знаем; некий англичанин, путешествовавший по России в 1554 году, свидетельствует, что русский локоть равнялся половине английского ярда. Согласно «Торговой книге», составленной для русских купцов на рубеже XVI и XVII веков, три локтя были равны двум аршинам. Название «аршин» происходит от персидского слова «арш», что значит локоть.

Первое упоминание сажени встречается в летописи ХI века, составленной киевским монахом Нестором.

В более позднее времена установилась мера расстояния верста, приравненная к 500 саженям. В древних памятниках верста называется поприщем и приравнивается иногда к 750 саженям. Это может быть объяснено существованием в древности более короткой сажени. Окончательно верста к 500 саженей установилась только в XVIII веке.

В эпоху раздробленности Руси не было единой системы мер. В ХV и XVI веках происходит объединение русских земель вокруг Москвы. С возникновением и ростом общегосударственной торговли и с установлением для казны сборов со всего населения объединенной страны встает вопрос о единой системе мер для всего государства. Мера аршин, возникшая при торговли с восточными народами, входит в употребление.

В XVIII веке меры уточнялись. Петр 1 указом установил равенство трехаршинной сажени семи английским футам. Прежняя русская система мер длины, дополненная новыми мерами, получила окончательный вид:

Миля = 7 верстам (= 7,47 километра);

Верста = 500 саженям (= 1,07 километра);

Сажень = 3 аршинам = 7 футам (= 2,13 метра);

Аршин = 16 вершкам = 28 дюймам (= 71,12 сантиметр);

Фут = 12 дюймам (= 30,48 сантиметра);

Дюйм = 10 линиям (2,54 сантиметра);

Линия = 10 точкам (2,54 миллиметра).

Когда говорили о росте человека, то указывали лишь, на сколько вершков он превышает 2 аршина. Поэтому слова «человек 12 вершков роста» означали, что его рост равен 2 аршинам 12 вершкам, то есть 196 см.

Меры площадей

В «Русской правде» - законодательном памятнике, который относиться к ХI - XIII векам, употребляется земельная мера плуг. Это была мера земли, с которой платили дань. Есть некоторые основания считать плуг равным 8-9 гектарам. Как и во многих странах, за меру площади часто принимали количество ржи необходимой для засева этой площади. В ХIII- ХV веках основной единицей площади была кадь-площадь, для засева каждой нужно была примерно 24 пуда (то есть 400 кг.) ржи. Половина этой площади, получившая название десятины стала основной мерой площади в дореволюционной России. Она ровнялась примерно 1,1 гектара. Десятина иногда называлась коробьей .

Другая единица для измерений площадей, равная половине десятины называлась (четверть) четь. В дальнейшем размер десятины был приведен в соответствие не с мерами объема и массы, а с мерами длины. В «Книге сонного письма» в качестве руководства для учета налогов с земли устанавливается десятина ровная 80*30=2400 квадратным саженям.

Налоговой единицы земли была с о х а (это количество пахотной земли, которое был в состоянии обработать один пахарь).

МЕРЫ ВЕСА (МАССЫ) и ОБЪЕМА

Древнейшей русской весовой единицей была гривна. Она упоминается еще в договорах Х века между киевскими князьями и византийскими императорами. Путем сложных расчетов ученые узнали, что гривна весила 68,22 г. Гривна ровнялась арабской единице веса ротль . Потом основными единицами при взвешивании стали фунт и пуд . Фунт ровнялся 6 гривнам, а пуд - 40 фунтам. Для взвешивания золота применялись золотники, составлявшие 1,96 доли фунта (отсюда происходит пословица «мал золотник да дорог»). Слова «фунт» и «пуд» происходят от одного и того же латинского слова «пондус» означавшего тяжесть. Должностные лица, проверявшие весы, назывались «пундовщиками» или «весцами». В одном из рассказов Максима Горького в описании амбара кулака читаем: «На одном засове два замка - один другого пудовее (тяжелее)».

К концу XVII века сложилась система русских мер веса в следующем виде:

Ласт =72 пудам (= 1,18 т.);

Берковец = 10 пудам (= 1,64 ц);

Пуд = 40 большим гривенкам (или фунтам), или 80 малым гривенкам, или 16 безменам (= 16,38 кг.);

Первоначальные древние меры жидкости - бочка и ведро – остаются неустановленными в точности. Есть основание полагать, что ведро вмещало 33 фунта воды, а бочка – 10 ведер. Ведро делили на 10 штофов.

Денежная система русского народа

Денежными единицами у многих народов служили кусочки серебра или золота определенного веса. В Киевской Руси такими единицами были гривны серебра . В «Русской правде» - древнейшем своде русских законов говорится, что за убийство или кражу коня полагается штраф в 2 гривны, а за вола - 1 гривна. Гривну делили на 20 ногат или на 25 кун, а куну – на 2 резаны. Название «куна» (куница) напоминает о временах, когда на Руси не было металлических денег, а вместо них употреблялись меха, а позднее – кожаные деньги – четырехугольные кусочки кожи с клеймами. Хотя гривна как денежная единица давно вышла из употребления, однако слово «гривна» сохранилось. Монету достоинством 10 копеек называли гривенником. Но это, конечно, не то же самое, что старая гривна.

Чеканные русские монеты известны со времен князя Владимира Святославовича. Во времена ордынского ига русские князья были обязаны указывать на выпускаемых монетах имя правившего в Золотой Орде хана. Но после Куликовской битвы, принесшей победу войскам Дмитрия Донского над полчищами хана Мамая, начинается и освобождение русских монет от ханских имен. Сначала эти имена стали заменяться неразборчивой вязью из восточных букв, а потом совсем исчезли с монет.

В летописях, относящихся к 1381 году, впервые встречается слово «деньга». Слово это происходит от индусского названия серебряной монеты танка, которую греки называли данака, татары – тенга.

Первое употребление слова «рубль» относится к XIV веку. Слово это происходит от глагола «рубить». В XIV веке гривну стали рубить пополам, и серебряный слиток в половину гривны (= 204,76 г) получил название рубля или рублевой гривенки .

В 1535 году были выпущены монеты – новгородки с рисунком всадника с копьем в руках, получившие название копейных денег . Летопись отсюда производит слово «копейка».

Дальнейший надзор за мерами в России.

С оживлением внутренней и внешней торговли надзор за мерами от духовенства перешел к специальным органам гражданской власти – приказу большой казны. При Иване Грозном предписывается взвешивать товары только у пудовщиков.

В XVI и XVII веках усердно вводились единые государственные, или таможенные меры. В XVIII и XIX веках проводились мероприятия по усовершенствованию системы мер и весов.

Закон о мерах и весах 1842 года закончил продолжавшиеся свыше 100 лет мероприятия правительства по упорядочению системы мер и весов.

Д. И. Менделеев – метролог.

В 1892 году гениальный русский химик Дмитрий Иванович Менделеев стал во главе Главной палаты мер и весов.

Руководя работой Главной палаты мер и весов, Д.И. Менделеев полностью преобразовал дело измерений в России, наладил научно- исследовательскую работу и решил все вопросы о мерах, которые вызывались ростом науки и техники в России. В 1899 году был издан разработанный Д.И. Менделеевым новый закон о мерах и весах.

В первые годы после революции Главная палата мер и весов, продолжала традиции Менделеева, провела колоссальную работу по подготовке введения метрической системы в СССР. После некоторых перестроек и переименований бывшая Главная палата мер и весов в настоящее время существует в виде Всесоюзного научно – исследовательского института метрологии имени Д.И. Менделеева.

Французские меры

Первоначально во Франции, да и во всей культурной Европе, пользовались латинскими мерами веса и длины. Но феодальная раздробленность вносила свои коррективы. Скажем, иному сеньору приходила фантазия слегка увеличить фунт. Никто из его подданных не возразит, не восставать же из-за таких мелочей. Но если посчитать, в общем, все оброчное зерно, то какая выгода! Также и с городскими цехами ремесленников. Кому-то было выгодно уменьшать сажень, кому-то увеличивать. В зависимости от того продают они сукно или покупают. По слегка, по чуть-чуть, и вот вам уже и рейнский фунт, и амстердамский, и нюренбергский и парижский и т. д. и т. п.

А с саженями и того обстояло хуже, только на юге Франции вращалось более десятка разных единиц длины.

Правда, в славном городе Париже в крепости Ле Гран Шатель еще со времен Юлия Цезаря в крепостную стену был вделан эталон длины. Он представлял собой железный кривоколенный циркуль, ножки которого заканчивались двумя выступами с параллельными гранями, между которыми должны точно входить все имевшиеся в употреблении сажени. Сажень Шателя пробыл официальной мерой длины до 1776 года.

С первого взгляда меры длины выглядели так:

Лье морское – 5, 556 км.

Лье сухопутное = 2 милям = 3,3898 км

Миля (от лат. тысяча) = 1000 туазов.

Туаз (сажень) =1,949 метров.

Фут (ступня) =1/6 туаза = 12 дюймов = 32,484 см.

Дюйм (палец) =12 линиям = 2,256 мм.

Линия = 12 точкам = 2,256 мм.

Точка = 0,188 мм.

На самом деле, поскольку феодальные привилегии никто не отменял, все это касалось города Парижа, ну дофине, в крайнем случае. Где-нибудь в глубинке фут запросто мог определяться, как размер ступни сеньора, или как средняя длина ступней 16 человек, выходящих с заутрени в воскресенье.

Парижский фунт = ливр = 16 унциям = 289,41 гр.

Унция (1/12 фунта) = 30,588 гр.

Гран (зерно) = 0,053 гр.

А вот артиллерийский фунт до сих пор равнялся 491,4144 гр., то есть просто соответствовал нюренбегскому фунту, которым пользовался еще в 16 веке господин Гартман, один из теоретиков – мастеров артиллерийского цеха. Соответственно с традициями гуляла и величина фунта в провинциях.

Меры жидких и сыпучих тел, тоже не отличались стройным однообразием, ведь Франция была все-таки страной, где население в основном выращивало хлеб и вино.

Мюид вина = около 268 литров

Сетье – около 156 литров

Мина = 0,5 сетье = около 78 литров

Мино = 0,5 мины = около 39 литров

Буассо = около 13 литров

Английские меры

Английские меры, меры, применяемые в Великобритании, США. Канаде и др. странах. Отдельные из этих мер в ряде стран несколько различаются по своему размеру, поэтому ниже приводятся, в основном, округленные метрические эквиваленты английских мер, удобные для практических расчетов.

Меры длины

Миля морская (Великобритания) = 10 кабельтовых = 1,8532 км

Кабельтов (Великобритания) = 185,3182 м

Кабельтов (США) = 185,3249 м

Миля уставная = 8 фарлонгам = 5280 футам = 1609,344 м

Фарлонг = 10чейнам = 201,168 м

Чейн = 4 родам = 100 линкам = 20,1168 м

Род (поль, перч) = 5,5 ярдам = 5,0292 м

Ярд = 3 футам = 0,9144 м

Фут = 3 хэндам = 12 дюймам = 0,3048 м

Хэнд = 4 дюймам = 10,16 см

Дюйм = 12 линиям = 72 точкам = 1000 милам = 2,54 см

Линия = 6 точкам = 2,1167 мм

Точка = 0,353 мм

Мил = 0,0254 мм

Меры площади

Кв. миля = 640 акрам = 2,59 км 2

Акр = 4 рудам = 4046,86 м 2

Руд = 40 кв. родам = 1011,71 м 2

Кв. род (поль, перч) = 30,25 кв. ярдам = 25,293 м 2

Кв. ярд = 9 кв. футам = 0,83613 м 2

Кв. фут = 144 кв. дюймам = 929,03 см 2

Кв. дюйм = 6,4516 см 2

Меры массы

Тонна большая, или длинная = 20 хандредвейтам = 1016,05 кг

Тонна малая, или короткая (США, Канада и др.) = 20 центалам = 907,185 кг

Хандредвейт = 4 квортерам = 50,8 кг

Центал = 100 фунтам = 45,3592 кг

Квортер = 2 стонам = 12,7 кг

Стон = 14 фунтам = 6,35 кг

Фунт = 16 унциям = 7000 гранам = 453,592 г

Унция = 16 драхмам = 437,5 грана = 28,35 г

Драхма = 1,772 г

Гран = 64,8 мг

Единицы объема, вместимости.

Куб. ярд = 27 куб. футам = 0,7646 куб. м

Куб. фут = 1728 куб дюймам = 0,02832 куб. м

Куб. дюйм = 16,387 куб. см

Единицы объема, вместимости

для жидкостей.

Галлон (английский) = 4 квартам = 8 пинтам = 4,546 л

Кварта (английская) = 1,136 л

Пинта (английская) = 0,568 л

Единицы объема, вместимости

для сыпучих тел

Бушель (английский) = 8 галлонам (английским) = 36,37 л

Развал древних систем мер

В I-II нашей эры римляне овладели почти всем известным тогда миром и ввели Вов всех завоеванных странах свою систему мер. Но через несколько столетий Рим был завоеван германцами и созданная римлянами империя распалась на множество мелких государств.

После этого и начался развал введенной системы мер. Каждый король, а то и герцог, пытался ввести свою систему мер, а если удавалось то и денежных единиц.

Развал системы мер достиг наивысшей точки в XVII-XVIII веках, когда Германия оказалось раздробленной на столько государств, сколько дней в году, в результате этого в ней насчитывалось 40 различных футов и локтей, 30 различных центнеров, 24 различных мили.

Во Франции было 18 единиц длины, называвшихся лье, и т.д.

Это вызывало затруднение и в торговых делах, и при взимании налогов, и в развитии промышленности. Ведь действовавшие одновременно единицы меры не были связаны друг с другом, имели различные подразделения на более мелкие. В этом было трудно разобраться многоопытному купцу, а что уж тут говорить о неграмотном крестьянине. Разумеется, этим пользовались купцы и чиновники, чтобы грабить народ.

В России в разных местностях почти все меры имели различные значения, поэтому в учебниках арифметики до революции помещали подробные таблицы мер. В одном распространенном дореволюционном справочнике можно было найти до 100 различных футов, 46 различных миль, 120 различных фунтов и т.д.

Потребности практики заставили начать поиски единой системы мер. При этом было ясно, что надо отказаться от установления между единицами измерения и размерами человеческого тела. И шаг у людей бывает разный и длина ступни у них неодинакова, и пальцы у них разной ширины. Поэтому надо было искать новые единицы измерения в окружающей природе.

Первой попытки найти такие единицы были сделаны еще в древности в Китае и в Египте. Египтяне в качестве единицы массы выбрали массу 1000 зерен. Но и зерна бывают неодинаковы! Поэтому идея одного из китайских министров, предложившего задолго до нашей эры выбрать в качестве единицы 100 расположенных в ряд зерен красного сорго, тоже была неприемлемой.

Ученые выдвигали разные идеи. Кто предлагал взять за основы мер размеры, связанных с пчелиными сотами, кто путь, проходимый за первую секунду, свободно падающим телом, а знаменитый ученный XVII века Христиан Гюйгенс предложил взять третью часть длины маятника, делающегося одно качание в секунду. Эта длина весьма близка к двойной длине вавилонского локтя.

Еще до него польский ученый Станислав Пудловский предложил взять за единицу измерения длину самого секундного маятника.

Рождение метрической системы мер.

Не удивительно, что когда в восьмидесятых годах XVIII купцы нескольких французских городов обратились к правительству с просьбой об установлении единой для всей страны системы мер, ученые тут же вспомнили о предложении Гюйгенса. Принятию этого предложения помешало то, что длина секундного маятника различна в различных местах земного шара. На Северном полюсе она больше, а на экваторе меньше.

В это время во Франции произошла буржуазная революция. Было созвано Национальное собрание, которое создало при Академии наук комиссию, составленную из крупнейших французских ученых того времени. Комиссии предстояло выполнять работу по созданию новой системы мер.

Одним из членов комиссии был знаменитый математик и астроном Пьер Симон Лаплас. Для его научных изысканий было весьма важно знать точную длину земного меридиана. Кто-то из членов комиссии вспомнил о предложении астронома Мутона взять за единицу длины часть меридиана, равную одной 21600–й части меридиана. Лаплас тут же поддержал это предложение (а может быть, и сам натолкнул на это мысль остальных членов комиссии). Сделали только одно измерение. Для удобства решили принять за единицу длины одну сорокамиллионную часть земного меридиана. Это предложение было внесено на рассмотрение национального собрания и принято им.

Все остальные единицы были согласованы с новой единицей, получившей название метра . За единицу площади был принят квадратный метр , объем – кубический метр , массы – масса кубического сантиметра воды при определенных условиях.

В 1790 году Национальное собрание приняло декрет о реформе систем мер. В представленном Национальному собранию докладе отмечалось, что в проекте реформы нет ничего произвольного, кроме десятичной основы, и нет ничего местного. «Если память об этих работах утратилось и сохранились лишь одни результаты, то в них не нашлось бы никакого признака, по которому можно было узнать, какая нация затеяла план этих работ, и осуществила их», - говорилось в докладе. Как видно, комиссия Академии, стремилась к тому, чтобы новая система мер не дала повода какой –нибудь нации отвергать систему, как французскую. Она стремилась оправдать лозунг: «На все времена, для всех народов», который был провозглашен позднее.

Уже в апреле 17956 года был утвержден закон о новых мерах, для всей Республики введен единый эталон: платиновая линейка на которой начертан метр.

Комиссия Парижской Академии наук с самого начала работ по разработке н6овой системы установила, что отношения соседних единиц должно равняться 10 .Для каждой величины (длина, масса, площадь, объем) от основной единицы этой величины образуются другие, большие и меньшие меры одинаковым образом (за исключением, названий «микрон», «центнер», «тонна»). Для образования названий мер, больших основной единицы, к названию последней с переде прибавляются греческие слова: «дека»-«десять», «гекто»- «сто», «кило»-«тысяча», «мириа»-«десять тысяч»; для образования названия мер, меньших основной единицы, прибавляются, также спереди частицы: «деци»-«десять», «санти»-«сто», «милли»-«тысяча».

Архивный метр.

Закон 1795 года, установив временный метр, указывает, что работы комиссии будут продолжаться. Измерительные работы были закончены лишь к осени 1798 года и дали окончательную длину метра в 3 фута 11,296 линии вместо 3футов 11,44 линии, каковую длину имел временный метр 1795 года (старинный французский фут равнялся 12 дюймам, дюйм-12 линиям).

Министром иностранных дел Франции был в те годы выдающийся дипломат Талейран, который еще раньше занимался проектом реформы, он предложил созвать представителей союзных с Франции и нейтральных стран для обсуждения новой системы мер и предания ее международного характера. В 1795 году делегаты съехались на международной конгресс; на нем было объявлено об окончании работ по проверке определения длины основных эталонов. В том же году изготовлены окончательные прототипы метры и килограммы. Они были изданы в Архив Республики на хранение, по этому получили названия архивный.

Временный метр был отменен и вместо него единицы длины признан архивный метр. Он имел вид стержня, поперечное сечение которого напоминает букву Х. Архивные эталоны лишь через 90 лет уступили свое место новым, получившим название международных.

Причины, мешавшие проведению в жизнь

метрической системы мер.

Население Франции встретило новые меры без особого энтузиазма. Причиной такого отношения были отчасти самые новые единицы мер не соответствовавшие вековым привычкам, а также новые, непонятные населению название мер.

Среди лиц, относившихся к новым мерам без восторга, был и Наполеон. Декретом 1812 года он наряду с метрической системой ввел «обиходную» систему мер для употребления в торговле.

Восстановление во Франции в 1815 году королевской власти содействовало забвенью метрической системы. Революционное происхождение метрической системы мешало распространению ее в других странах.

С 1850 года передовые ученные начинают энергичную агитацию в пользу метрической системы.Одной из причин этого были начавшиеся тогда международные выставки, показавшие все удобства существовавших различных национальных систем мер. Особенно плодотворно в этом направлении была деятельность Петербургской Академии наук и ее члена Бориса Семеновича Якоби. В семидесятых годах эта деятельность увенчалась действительным превращением метрической системы в международную.

Метрическая система мер в России.

В России ученые с начала XIX века поняли назначение метрической системы и пытались ее широко внедрить в практику.

В годы от 1860 до 1870 после энергичных выступлений Д.И.Менделеева компанию в пользу метрической системы ведут академик Б.С.Якоби, профессор математики А.Ю.Давидов автор распространенных в свое время школьных учебников математики, и академик А.В. Гадолин. К ученым присоединялись и русские фабриканты и заводчики. Русское техническое общество поручило специальной комиссии под председательством академика А.В. Гадолина разработать этот вопрос. В эту комиссию поступило много предложений от ученных и технических организаций, единогласно поддерживающих предложения о переходе на метрическую систему.

Изданный в 1899 году закон о мерах и весах разработанный Д.Т.Менделеевым включал параграф № 11:

«Международный метод и килограмм, их подразделения, а равно и иные метрические меры дозволяется применять в России, наверняка с основными российскими мерами, в торговых и иных сделках, контрактах, сметах, подрядах, и тому подобных – взаимному соглашению договаривающихся сторон, а также в пределах деятельности отдельных казенных ведомств…с разращения или по распоряжению подлежащих министров…».

Окончательное решение вопроса о метрической системы в России получил уже после Великой Октябрьской социалистической революции. В 1918 году Советом Народных Комиссаров под председательством В.И.Ленина было издано постановление, в котором предлагалось:

«Положить в основание всех измерений международную метрическую систему мер и весов десятичными подразделениями и производными.

Принять за основу единицы длины - метр, а за основу единицы веса (массы) - килограмм. За образцы единиц метрической системы принять копию международного метра, носящую знак № 28, и копию международного килограмма, носящую знак № 12, изготовленные из иридистой платины, переданные России Первой международной конференцией мер и весов в Париже в 1889 году и хранимые ныне в Главной палате мер и весов в Петрограде».

С 1 января 1927 года, когда переход промышленности и транспорта на метрическую систему был подготовлен, метрическая система мер стала единственно допускаемой в СССР системой мер и весов.

Старинные русские меры

в пословицах и поговорках.

Аршин да кафтан, да два на заплатки.
Борода с вершок, а слов с мешок.
Врать - семь верст до небес и все лесом.
За семь верст комара искали,а комар на носу.
На аршин бороды, да ума на пядь.
На три аршина в землю видит!
Ни пяди не уступлю.
От мысли до мысли пять тысяч верст.
Охотник за семь верст ходит киселя хлебать.
Писать (говорить) о чужих грехах аршинными, а о своих - строчными буквами.
Ты от правды (от службы) на пядень, а она от тебя – на сажень.
Тянись верстой, да не будь простой.
За это можно и пудовую (рублевую) свечку поставить.
Зернышко пуд бережет.
Не худо, что булка с полпуда.
Одно зерно пуды приносит.
Свой золотник чужого пуда дороже.
Съел полпуда – сыт покуда.
Узнаешь почем пуд лиха.
У него в голове ни ползолотника мозга (ума).
Худое валит пудами, а хорошее золотниками.

ТАБЛИЦА СРАВНЕНИЯ МЕР

    Меры длины

1 верста = 1,06679 километра
1 сажень = 2,1335808 метра
1 аршин = 0,7111936 метра
1 вершок = 0,0444496 метра
1 фут = 0,304797264 метра
1 дюйм = 0,025399772 метра

1 километр = 0,9373912 версты
1 метр = 0,4686956 сажени
1 метр = 1,40609 аршина
1 метр = 22,4974 вершка
1 метр = 3,2808693 фут
1 метр = 39,3704320 дюйма

    1 сажень = 7 футов
    1 сажень = 3 аршина
    1 сажень = 48 вершков
    1 миля = 7 верст
    1 верста = 1,06679 километра

    Меры объема и площади

1 четверик = 26,2384491 литра
1 четверть = 209,90759 литра
1 ведро = 12,299273 литра
1 десятина = 1,09252014 гектара

1 литр = 0,03811201 четверика
1 литр = 0,00952800 четверти
1 литр = 0,08130562 ведра
1 гектар = 0,91531493 десятины

    1 бочка = 40 ведер
    1 бочка = 400 штофов
    1 бочка = 4000 чарок

1 четверть = 8 четвериков
1 четверть = 64 гарнца

    Меры веса

1 пуд = 16,3811229 килограмма

1 фунт = 0,409528 килограмм
1 золотник = 4,2659174 грамма
1 доля = 44,436640 миллиграмма

    1 килограмм = 0,9373912 версты
    1 килограмм = 2,44183504 фунта
    1 грамм = 0,23441616 золотника
    1 миллиграмм = 0,02250395 доли

    1 пуд = 40 фунтов
    1 пуд = 1280 лотов
    1 берков = 10 пудов
    1 ласт = 2025 и 4/9 килограмм

    ЗачемОсновная образовательная программа

    Участие в «малых конференциях» по темам: «Зачем человеку нужно уметь читать?», «Моя любимая книга... с данным требованием Масса. Сравнение. Измерение (3 ч) Масса. Сравнение. Измерение Представление о массе предметов. Знакомство...

Предмет физики.

Физика – естественная наука, задача которой –изучение природы. Природа для нас это совокупность явлений окружающего мира, из взаимодействие. Мерилом справедливости научных выводов является опыт. Метод любой науки состоит в наблюдении, размышлении и опыте. Для физики, название которой означает «природоведение» существенным является установление закономерностей, которые наблюдаются в явления как живой, так и неживой природы. Эти закономерности выражаются или описываются теми или иными физическими законами.

В недалеком историческом прошлом все явления природы принято было делить на классы.: теплоты, электричества, механики, магнетизма, химических явлений, световых явлений, рентгеновских лучей, ядерных превращений. и т.д. Однако эта классификация явлений является отображением различных сторон одной физической картины мира.

Почему изучение физики так важно для человечества? Одним из существенных мотивов является необходимость применения физических, прежде всего экспериментальных методов для получения качественно новых сведений о явлениях из других областей науки. Это чисто прагматичный подход. Что касается самой физики, то в ней открытие новых явлений и осмысливание их позволяет усовершенствовать и построить более стройную картину миру, систему представлений о природе.

Пример прагматической ценности физических методов – создание микроскопа позволило исследовать множество микроскопических объектов и получить громадное количество знаний о живых микроскопических объектах в том числе в разделе клеточной биологии. Применение рентгено структурного анализа позволило расшифровать структуру ДНК. Собственные достижения физики – в прошлом веке было понято, что тепловые явления могут быть сведены к механическим. Теплота и температурные эффекты могут быть описаны с помощью законов механики.

При изучении любого ограниченного круга явлений важно установить закономерности или принципы с помощью которых объясняются все известные наблюдаемые явления рассматриваемого ряда. Установление этих принципов в дальнейшем предсказать некоторые новые явления.

Физика, будучи наукой естественной, не основывается на законах и принципах, которые могут быть получены, доказаны, рассмотрены чисто умозрительно. Всегда, любой физический закон является следствием и получен в результате обобщения набора опытных, экспериментальных фактов. Любой опыт ставится с помощью измерительных приборов. В процессе выполнения опыта измеряются те или иные результаты с некоторым погрешностями. Возникает вопрос о том, что те законы, которые подтверждаются данным опытом соблюдаются с некоторой точностью? Действительно, в некоторых случаях известные закономерности справедливы лишь в ограниченных пределах и с ограниченной точностью. С совершенствованием техники, измерительных методик и накоплением массивов опытных фактов возможно получать более точные результаты, либо опровергнуть ранее наблюдаемые с относительно большими погрешностями. В этом случае первично сформулированные принципы заменяются на новые. Этот процесс иллюстрирует собой методологию науки физики.

В качестве примера рассмотрим эволюцию Ньютоновской механики. Ньютоновской она называется потому, что Исаак Ньютон обощил и систематизировал семейство опытных фактов в «Математических началах натуральной философии»- 1642г. Ньютоновская механика с очень хорошей точностью описывает относительно медленные движения, справедлива вы нерелятивистском приближении. v << c и является, предельным случаем релятивистской механики при v/ c << 1 . Принципы Ньютоновской механики несправедливы при описании объектов микромира, в атомных, молекулярных масштабах. В этом случае правильное, подтверждаемое опытом описание достигается только на основе принципов квантовой механики.

Модель, теория, закон.

Модель – мысленный образ явления, опирающийся на известные понятия, и ограничивающийся при рассмотрении явления только наиболее существенными его сторонами. Модель позволяет построить полезное, возможно, математическое описание. Модель является отображением явления, в котором учитываются наиболее существенные его свойства. Пример: квазиклассическая планетарная модель атома Бора. Модельные предположения состоят в пренебрежении размерами ядра и электронов. Модель опускает вопросы устойчивости такого образования. Модель атома Бора правильно описывает спектр простейших водородоподобных атомов.

Теория. Иногда термин теория и модель являются синонимами. Чаще модель предполагает относительную простоту, по сравнению с теорией. Теория рассматривает более широкий круг явлений, изучает их более детально. Возможно, что теория строится на основе ряда моделей и т. образом привести решение задач с высокой математической точностью. Пример: атомно - молекулярная теория строения вещества.

Закон – краткие и общие утверждения относительно характера процессов. Например: импульс замкнутой системы сохраняется. Или, например, закон всемирного тяготения: сила пропорциональна произведению масс и обратно пропорциональна квадрату расстояния между ними. Закон устанавливает соотношение между физическими величинами, описывающими явление. Чтобы называться законом некоторое утверждение должно быть многократно подтверждено опытными фактами в широком диапазоне условий. Причем эта экспериментальная проверка должна давать всякий раз точный результат. Например закон сохранения энергии рассматриваемый в актах столкновения частиц гласит: энергия системы до столкновения равна энергии системы после столкновения. Знак равенства имеет место всегда, во множестве опытов, равенство выполняется с достижимой современными приборами точностью.

Системы единиц, размерности.

Физика – количественная наука. Любое измерение дает результат в виде числа. Измеренное число подразумевает, что введены некоторые масштабы (эталоны) , которые будут называться единицами измерений (стандарты).


Ознакомить с устройством и принципом действия барометра-анероида и научить пользоваться им.

Способствовать развитию умения связывать явления природы с физическими законами.

Продолжить формирование представлений об атмосферном давлении и связи атмосферного давления с высотой подъема над уровнем моря.

Продолжить воспитывать внимательное доброжелательное отношение к участникам учебного процесса, личную ответственность за выполнение коллективной работы, понимание необходимости заботиться о чистоте атмосферного воздуха и соблюдать правила охраны природы, приобретение житейских навыков.

Представьте себе заполненный воздухом герметичный цилиндр, с установленным сверху поршнем. Если начать давить на поршень, то объем воздуха в цилиндре начнет уменьшаться, молекулы воздуха станут сталкиваться друг с другом и с поршнем все интенсивнее, и давление сжатого воздуха на поршень возрастет.

Если поршень теперь резко отпустить, то сжатый воздух резко вытолкнет его вверх. Это произойдет потому, что при неизменной площади поршня увеличится сила, действующая на поршень со стороны сжатого воздуха. Площадь поршня осталась неизменной, а сила со стороны молекул газа увеличилась, соответственно увеличилось и давление.

Или другой пример. Стоит человек на земле, стоит обеими стопами. В таком положении человеку комфортно, он не испытывает неудобств. Но что случится, если этот человек решит постоять на одной ноге? Он согнет одну из ног в колене, и теперь будет опираться на землю только одной стопой. В таком положении человек ощутит определенный дискомфорт, ведь давление на стопу увеличилось, причем примерно в 2 раза. Почему? Потому что площадь, через которую теперь сила тяжести придавливает человека к земле, уменьшилась в 2 раза. Вот пример того, что такое давление, и как легко его можно обнаружить в обычной жизни.


Давление в физике

С точки зрения физики, давлением называют физическую величину, численно равную силе, действующей перпендикулярно поверхности на единицу площади данной поверхности. Поэтому, чтобы определить давление в некоторой точке поверхности, нормальную составляющую силы, приложенной к поверхности, делят на площадь малого элемента поверхности, на который данная сила действует. А для того чтобы определить среднее давление по всей площади, нормальную составляющую действующей на поверхность силы нужно разделить на полную площадь данной поверхности.

Паскаль (Па)

Измеряется давление в системе СИ в паскалях (Па). Эта единица измерения давления получила свое название в честь французского математика, физика и литератора Блеза Паскаля, автора основного закона гидростатики - Закона Паскаля, гласящего, что давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях. Впервые единица давления «паскаль» была введена в обращение во Франции в 1961 году, согласно декрету о единицах, спустя три столетия после смерти ученого.


Один паскаль равен давлению, которое вызывает сила в один ньютон, равномерно распределенная, и направленная перпендикулярно к поверхности площадью в один квадратный метр.

В паскалях измеряют не только механическое давление (механическое напряжение), но и модуль упругости, модуль Юнга, объемный модуль упругости, предел текучести, предел пропорциональности, сопротивление разрыву, сопротивление срезу, звуковое давление и осмотическое давление. Традиционно именно в паскалях выражаются важнейшие механические характеристики материалов в сопромате.

Атмосфера техническая (ат), физическая (атм), килограмм-сила на квадратный сантиметр (кгс/см2)

Кроме паскаля для измерения давления применяют и другие (внесистемные) единицы. Одной из таких единиц является «атмосфера» (ат). Давление в одну атмосферу приблизительно равно атмосферному давлению на поверхности Земли на уровне Мирового океана. На сегодняшний день под «атмосферой» понимают техническую атмосферу (ат).

Техническая атмосфера (ат) - это давление, производимое одной килограмм-силой (кгс), распределенной равномерно по площади в один квадратный сантиметр. А одна килограмм-сила, в свою очередь, равна силе тяжести, действующей на тело массой в один килограмм в условиях ускорения свободного падения, равного 9,80665 м/с2. Одна килограмм-сила равна таким образом 9,80665 ньютон, а 1 атмосфера оказывается равной точно 98066,5 Па. 1 ат = 98066,5 Па.

В атмосферах измеряют, например, давление в автомобильных шинах, например рекомендованное давление в шинах пассажирского автобуса ГАЗ-2217 равно 3 атмосферам.


Есть еще «физическая атмосфера» (атм), определяемая как давление ртутного столба, высотой 760 мм на его основание при том, что плотность ртути равна 13595,04 кг/м3, при температуре 0°C и в условиях ускорения свободного падения равного 9,80665 м/с2. Так выходит, что 1 атм = 1,033233 ат = 101 325 Па.

Что касается килограмм-силы на квадратный сантиметр (кгс/см2), то эта внесистемная единица давления с хорошей точностью равна нормальному атмосферному давлению, что бывает иногда удобно для оценок различных воздействий.

Бар (бар), бария

Внесистемная единица «бар» равна приблизительно одной атмосфере, но является более точной - ровно 100000 Па. В системе СГС 1 бар равен 1000000 дин/см2. Раньше название «бар» носила единица, называемая сейчас «бария», и равная 0,1 Па или в системе СГС 1 бария = 1 дин/см2. Слово «бар», «бария» и «барометр» происходят от одного и того же греческого слова «тяжесть».

Часто для измерения атмосферного давления в метеорологии используют единицу мбар (миллибар), равную 0,001 бар. А для измерения давления на планетах где атмосфера очень разряженная - мкбар (микробар), равный 0,000001 бар. На технических манометрах чаще всего шкала имеет градуировку именно в барах.

Миллиметр ртутного столба (мм рт. ст.), миллиметр водяного столба (мм вод. ст.)

Внесистемная единица измерения «миллиметр ртутного столба» равна 101325/760 = 133,3223684 Па. Обозначается «мм рт.ст.», но иногда ее обозначают «торр» - в честь итальянского физика, ученика Галилея, Эванджелисты Торричелли, автора концепции атмосферного давления.

Образовалась единица в связи с удобным способом измерения атмосферного давления барометром, у которого ртутный столб пребывает в равновесии под действием атмосферного давления. Ртуть обладает высокой плотностью около 13600 кг/м3 и отличается низким давлением насыщенного пара в условиях комнатной температуры, поэтому для барометров в свое время и была выбрана именно ртуть.


На уровне моря атмосферное давление равно приблизительно 760 мм рт.ст., именно это значение и принято считать теперь нормальным атмосферным давлением, равным 101325 Па или одной физической атмосфере, 1 атм. То есть 1 миллиметр ртутного столба равен 101325/760 паскаль.

В миллиметрах ртутного столба измеряют давление в медицине, в метеорологии, в авиационной навигации. В медицине кровное давление измеряют в мм рт.ст, в вакуумной технике приборы для измерения давления градуируются в мм рт.ст, наряду с барами. Иногда даже просто пишут 25 мкм, подразумевая микроны ртутного столба, если речь идет о вакуумировании, а измерения давления осуществляют вакуумметрами.

В некоторых случаях используют миллиметры водяного столба, и тогда 13,59 мм вод.ст = 1мм рт.ст. Иногда это более целесообразно и удобно. Миллиметр водяного столба, как и миллиметр ртутного столба - внесистемная единица, равная в свою очередь гидростатическому давлению 1 мм столба воды, которое этот столб оказывает на плоское основание при температуре воды столба 4°С.

Комментарии

Проблема артериальной гипертонии стала одной из наиболее актуальных в современной медицине. Большое число людей страдает повышением артериального давления (АД). Инфаркт, инсульт, слепота, почечная недостаточнось - все это грозные осложнения гипертонии, результат неправильного лечения или его отсутствия вообще. Есть только один способ избежать опасных осложнений - поддержание постоянного нормального уровня артериального давления с помощью современных качественных препаратов.

Подбор лекарств - дело врача. От пациента требуется понимание необходимости лечения, соблюдение рекомендаций врача и, главное, постоянный самоконтроль.

Каждый пациент, страдающий гипертонией, должен регулярно измерять и записывать свое давление, вести дневник самочувствия. Это поможет доктору оценить эффективность лечения, адекватно подобрать дозу препарата, оценить риск возможных осложнений и эффективно предотвратить их.

При этом важно измерять давление и знать его среднесуточный уровень именно в домашних условиях, т.к. цифры давления, полученные на приеме у врача, часто бывают завышенными: пациент волнуется, устал, сидя в очереди, забыл принять лекарство и по многим другим причинам. И, наоборот, дома могут возникать ситуации, которые вызывают резкое повышение давления: стрессы, физические нагрузки и другое.

Поэтому каждый гипертоник должен иметь возможность измерить давление дома в спокойной привычной обстановке, чтобы иметь представление об истинном уровне давления.

КАК ПРАВИЛЬНО ИЗМЕРЯТЬ ДАВЛЕНИЕ?

При измерении АД необходимо придерживаться некоторых правил:

Измеряйте давление в спокойной обстановке при комфортной температуре, не ранее чем через 1 - 2 часа после приема пищи, не ранее чем через 1 час после курения, употребления кофе. Сядьте удобно, опираясь на спинку стула, не скрещивая ноги. Рука должна быть обнажена, а остальная одежда не должны быть узкой, тесной. Не разговаривайте, это может повлиять на правильность измерения АД.

Манжета должна иметь соответствующие размеру руки длину и ширину. Если окружность плеча превышает 32 см или плечо имеет конусовидную форму, что затрудняет правильность наложения манжеты, необходима специальная манжета, т.к. использование узкой или короткой манжеты приводит к существенному завышению цифр АД.

Наложите манжету так, чтобы ее нижний край был на 2,5 см выше края локтевой ямки. Не сжимайте ее слишком туго - между плечом и манжетой должен свободно проходить палец. Наложите стетоскоп в место наилучшего прослушивания пульсации плечевой артерии сразу над локтевой ямкой. Мембрана стетоскопа должна плотно прилегать к коже. Но не давите слишком сильно, чтобы избежать дополнительного пережатия плечевой артерии. Стетоскоп не должен касаться трубок тонометра, чтобы звуки от соприкосновения с ними не помешали измерению.

Расположите стетоскоп на уровне сердца обследуемого или на уровне его 4-го ребра. Нагнетайте воздух в манжету энергично, медленное нагнетание приводит к усилению болевых ощущений и ухудшает качество восприятия звука. Выпускайте воздух из манжеты медленно - 2 мм рт. ст. в секунду; чем медленнее выпускать воздух, тем выше качество измерения.

Повторное измерение АД возможно через 1 - 2 минуты после полного выхода воздуха из манжеты. АД может колебаться от минуты к минуте, поэтому среднее значение двух и более измерений более точно отражает истинное внутриартериальное давление. СИСТОЛИЧЕСКОЕ И ДИАСТОЛИЧЕСКОЕ ДАВЛЕНИЕ

Чтобы определить параметры давления, необходимо правильно оценить звуки, которые слышны «в стетоскопе».

Систолическое давление определяется по ближайшему делению шкалы, у которого стали слышны первые последовательные тоны. При выраженных нарушениях ритма для точности необходимо сделать несколько измерений подряд.

Диастолическое давление определяется или по резкому снижению громкости тонов, или по полному их прекращению. Эффект нулевого давления, т.е. непрекращающихся до 0 тонов, может наблюдаться при некоторых патологических состояниях (тиреотоксикоз, пороки сердца), беременности, у детей. При диастолическом давлении выше 90 мм рт. ст. необходимо продолжать измерение АД на протяжении еще 40 мм рт. ст. после исчезновения последнего тона, чтобы избежать ложно завышенных значений диастолического давления из-за явлений «аускультативного провала» - временного прекращения тонов.

Часто для получения более точного результата необходимо измерить давление несколько раз подряд, а иногда и вычислить среднее значение, которое более точно соответствует истинному внутриартериальному давлению.

ЧЕМ ИЗМЕРЯТЬ ДАВЛЕНИЕ?

Для измерения давления врачи и пациенты используют различные виды тонометров. Тонометры различают по нескольким признакам:

По месту расположения манжеты: лидируют тонометры «на плечо» - манжета накладывается на плечо. Это положение манжеты позволяет получить наиболее точный результат измерений. В многочисленных исследованиях доказано, что все другие положения («манжета на запястье», «манжета на пальце») могут давать значительные расхождения с истинным давлением. Результат измерений запястным прибором очень зависит от положения манжеты относительно сердца в момент измерения и, самое главное, от алгоритма измерения, использованного в конкретном приборе. При использовании пальцевых тонометров результат может зависеть даже от температуры пальца и других параметров. Такие тонометры не могут быть рекомендованы к использованию.

Стрелочный или цифровой - в зависимости от типа определения результатов измерения. У цифрового тонометра имеется небольшой экран, на котором высвечиваются пульс, давление и некоторые другие параметры. У стрелочного тонометра имеется циферблат и стрелка, и результат измерения фиксирует сам исследователь.

Тонометр может быть механический, полуавтоматический или полностью автоматический, в зависимости от типа устройства нагнетания воздуха и метода измерения. КАКОЙ ТОНОМЕТР ВЫБРАТЬ?

Каждый тонометр имеет свои особенности, преимущества и недостатки. Поэтому, если вы решили купить тонометр, обратите внимание на особенности каждого из них.

Манжета: должна по размеру соответствовать вашей руке. Стандартная манжета предназначена для руки с длиной окружности 22 - 32 см. Если у вас крупная рука - необходимо приобрести манжету большего размера. Для измерения давления у детей существуют маленькие детские манжеты. В особых случаях (врожденные пороки) требуются манжеты для измерения давления на бедре.
Лучше, если манжета сделана из нейлона, оснащена металлическим кольцом, что значительно облегчает процесс закрепления манжеты на плече при самостоятельном измерении давления. Внутренняя камера должна быть выполнена по бесшовной технологии или иметь специальную форму, что обеспечивает манжете прочность и делает измерение более комфортным.

Фонендоскоп: обычно фонендоскоп идет в комплекте с тонометром. Обратите внимание на его качество. Для домашнего измерения давления удобно, когда тонометр оснащен встроенным фонендоскопом. Это большое удобство, так как в таком случае фонендоскоп не нужно держать в руках. Кроме того, нет необходимости заботиться о правильности его месторасположения, что бывает серьезной проблемой при самостоятельном измерении и отсутствии достаточного опыта.

Манометр: манометр для механического тонометра должен быть с яркими четкими делениями, иногда они бывают даже светящиеся, что удобно при измерении в темном помещении или ночью. Лучше, если манометр оснащен металлическим корпусом, такой манометр долговечнее.

Очень удобно, когда манометр совмещен с грушей - элементом нагнетания воздуха. Это облегчает процесс измерения давления, позволяет правильно расположить манометр относительно пациента, повышает точность полученного результата.

Груша: как уже говорилось выше, хорошо, если груша совмещена с манометром. Качественная груша оснащена металлическим винтом. Кроме того, если вы левша, обратите внимание, что груши бывают адаптированные к работе правой или левой рукой.

Дисплей: при выборе тонометра имеют значение размеры дисплея. Есть дисплеи маленькие, где высвечивается только один параметр - например, последнее измерение АД. На большом дисплее можно увидеть результат измерения давления и пульса, цветовую шкалу давления, значение среднего давления из нескольких последних измерений, индикатор аритмии, индикатор заряда батареи.

Дополнительные функции: автоматический тонометр может быть оснащен такими удобными функциями, как:
индикатор аритмии - при нарушении ритма сердца вы увидите отметку об этом на дисплее или услышите звуковой сигнал. Наличие аритмии искажает правильность определения АД, особенно при однократном измерении. В этом случае рекомендуется измерить давление несколько раз и определить среднее значение. Особые алгоритмы некоторых приборов позволяют производить точные измерения, несмотря на нарушения ритма;
память на несколько последних измерений. В зависимости от типа тонометра он может обладать функцией запоминания нескольких последних измерений от 1 до 90. Вы можете просмотреть свои данные, узнать последние цифры давления, составить график давления, вычислить среднее значение;
автоматическое вычисление среднего давления; звуковое оповещение;
функция ускоренного измерения давления без потери точности измерения; существуют семейные модели, в которых отдельные функциональные кнопки обеспечивают возможность независимого пользования тонометром двумя людьми, с отдельной памятью на последние измерения;
удобны модели, обеспечивающие возможность работы как от батареек, так и от общей электрической сети. В домашних условиях это не только повышает удобство измерения, но и снижает расходы на пользование прибором;
существуют модели тонометров, оснащенные принтером для распечатки последних показателей АД из памяти, а также приборы, совместимые с компьютером.

Таким образом, механический тонометр обеспечивает более высокое качество измерения в опытных руках, у исследователя с хорошим слухом и зрением, способным правильно и точно соблюсти все правила измерения АД. Кроме того, механический тонометр существенно дешевле.

Электронный (автоматический или полуавтоматический) тонометр хорош для домашнего измерения АД и может быть рекомендован людям, не имеющим навыков измерения АД методом аускультации, а также пациентам с пониженным слухом, зрением, реакцией, т.к. не требует от измеряющего непосредственного участия в измерении. Нельзя не оценить полезности таких функций, как автоматическая накачка воздуха, ускоренное измерение, память результатов измерения, вычисление среднего АД, индикатор аритмии и специальные манжеты, исключающие болезненные ощущения при измерении.

Однако точность электронных тонометров не всегда одинакова. Предпочтение следует отдавать клинически апробированным приборам, т. е. прошедшим испытания по всемирно известным протоколам (BHS, AAMI, International Protocol).

Источники Журнал «ПОТРЕБИТЕЛЬ. Экспертиза и Тесты», 38’2004, Мария Сасонко apteka.potrebitel.ru/data/7/67/54.shtml

Измерение (физика)

Измерение - совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений - мер , измерительных приборов , измерительных преобразователей , систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений - физическое явление или эффект, положенное в основу измерений.
  • Метод измерений - приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность Примеры измерений

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений , Шкала Мооса - шкала твёрдости минералов

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией .

Классификация измерений

По видам измерений

  • Прямое измерение - измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение - определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.
  • Совокупные измерения - проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

По методам измерений

  • Метод непосредственной оценки - метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений
  • Метод сравнения с мерой - метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
    • Нулевой метод измерений - метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
    • Метод измерений замещением - метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
    • Метод измерений дополнением - метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению
    • Дифференциальный метод измерений - метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами

По назначению

Технические и метрологические измерения

По точности

Детерминированные и случайные

По отношению к изменению измеряемой величины

Статические и динамические

По числу измерений

Однократные и многократные

По результатам измерений

  • Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение - измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

История

Единицы и системы измерения

Литература и документация

Литература

  • Кушнир Ф. В. Радиотехнические измерения : Учебник для техникумов связи - М.: Связь, 1980
  • Нефедов В. И., Хахин В. И., Битюков В. К. Метрология и радиоизмерения : Учебник для вузов - 2006
  • Н. С. Основы метрологии : практикум по метрологии и измерениям - М.: Логос, 2007

Нормативно-техническая документация

  • РМГ 29-99 ГСИ. Метрология. Основные термины и определения
  • ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

Ссылки

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Измерение (физика)" в других словарях:

    Измерение: В математике (а также в теоретической физике): Количество измерений пространства определяет его размерность. Измерение любая из координат точки или точечного события. В физике: Измерение (физика) определение значения физической… … Википедия

    Представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия

    Содержание 1 Методы получения 1.1 Испарение жидкостей … Википедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    У этого термина существуют и другие значения, см. Измерение (значения). Квантовая механика … Википедия

    Исследование влияния, оказываемого на вещество очень высокими давлениями, а также создание методов получения и измерения таких давлений. История развития физики высоких давлений удивительный пример необычайно быстрого прогресса в науке,… … Энциклопедия Кольера

    Слабые измерения являются типом квантово механического измерения, где измеряемая система слабо связана с измерительным прибором. После слабого измерения указатель измерительного прибора оказывается смещённым на так называемую «слабую величину». В … Википедия

    Нейтронная физика раздел физики элементарных частиц, занимающийся исследованием нейтронов, их свойств и структуры (времени жизни, магнитного момента и др.), методов получения, а также возможностями использования в прикладных и научно… … Википедия

    Кибернетическая физика область науки на стыке кибернетики и физики, изучающая физические системы кибернетическими методами. Под кибернетическими методами понимаются методы решения задач управления, оценивания переменных и параметров… … Википедия

    У этого термина существуют и другие значения, см. Оператор. Квантовая механика … Википедия

Книги

  • Физика: колебания и волны. Лабораторный практикум. Учебное пособие для прикладного бакалавриата , Горлач В.В.. В учебном пособии представлены лабораторные работы по темам: вынужденные колебания, колебания груза на пружине, волны в упругой среде, измерение длины звуковой волны и скорости звука, стоячие…


Понравилась статья? Поделиться с друзьями: