Получение водорода. Получение водорода электролизом воды

Электролиз воды - это самый старый способ получения водорода. Пропуская постоянный ток через воду, на катоде накапливается - водород, а на аноде - кислород. Получение водорода электролизом очень энергозатратный производство, поэтому используется исключительно в тех областях, где данный газ достаточно ценен и необходим.

Получение водорода в домашних условиях достаточно легкий процесс и есть несколько способов сделать это:

1. Нам понадобится раствор щелочи не пугайтесь этих названий т.к. все это есть в свободном доступе.

Например, средство для очистки труб «крот» отлично подойдет по составу. Насыпаем в колбу немного щелочи и заливаем 100 мл воды;

Тщательно перемешиваем для полного растворения кристаллов;

Добавляем несколько небольших кусочков алюминия;

Ждем около 3-5 минут, пока реакция будет проходить максимально быстро;

Добавляем дополнительно несколько кусочков алюминия и 10-20 грамм щелочи;

Закрываем резервуар специальной колбой с трубкой, которая ведет в резервуар для сбора газа и ждем несколько минут пока воздух не выйдет под давлением водорода из сосуда.

2. Выделение водорода из алюминия, пищевой соли и сульфата меди.

В колбу насыпаем сульфат меди и чуть больше соли;

Разбавляем все водой и хорошо перемешиваем;

Ставим колбу в резервуар с водой, так как при реакции будет выделяться много тепла;

В остальном все нужно делать так же как в первом способе.

3. Получение водорода из воды путем пропускания тока в 12В через раствор соли в воде. Это самый простой способ и больше всего подходит для домашних условий. Единственный минус этого способа в том, что водорода выделяется сравнительно мало.

Итак. Теперь вы знаете, как получить водород из воды и не только. Вы можете проводить очень много экспериментов. Не забывайте придерживаться правил безопасности во избежание травм.

Получение водорода в домашних условиях

В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.

Способ 1. Водород из алюминия и щелочи.

Используемый раствор щелочи - едкого кали, либо едкого натра. Выделяемый водород более чистый, чем при реакции кислот с активными металлами.

Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.

Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.

Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин. пока водород вытеснит воздух из сосуда.

Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.

2Al + 2NaOH + 6h3O → 2Na + 3h3

Способ 2. Водород из алюминия, сульфата меди и пищевой соли.

В колбу насыпаем немного сульфата меди, и соли. Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.

Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.

Добавляем в раствор несколько кусочков алюминия. Начнется реакция.

Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.

Способ 3. Водород из цинка и соляной кислоты.

Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.

Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.

Zn + 2HCl → ZnCl2 + h3

Способ 4. Производство водорода электролизом.

Пропускаем через раствор воды и проваренной соли электрический ток. При реакции, будет выделятся водород и кислород.

Получение водорода электролизом воды.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось. Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов. К электродам прикрепляются провода. Провода должны быть тщательно изолированы. Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов. Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок. Их необходимо соединить вместе и оплавить шов. Гайки делаются из бутылочных крышек. В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона. В крышке распаячной коробки делаются необходимые отверстия. Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Основные знания по классическому электролизу.

Принцип экономичности электролизёра для получения газа h3 и O2.

Наверняка все знают, если опустить два гвоздя в раствор питьевой соды и подать на один гвоздь плюс, а на другой минус, то на минусе будет выделяться Водород, а на плюсе Кислород.

Теперь наша задача найти такой подход, чтобы получить как можно больше этого газа и потратить при этом минимальное количество электроэнергии.

Урок 1. Напряжение

Разложение воды начинается при подаче на электроды чуть больше 1,8 вольта. Если подавать 1 вольт, то ток практически не идёт и не выделяется газ, а вот когда напряжение подходит к значению 1,8 вольта, то ток резко начинает расти. Это называется минимальный электродный потенциал при котором начинается электролиз. Поэтому- если мы подадим 12 вольт на эти 2 гвоздя - то такой электролизёр будет жрать много электроэнергии, а газу будет мало. Вся энергия уйдёт в нагрев электролита.

Для того. чтобы наш электролизёр был экономичным - надо подавать не более 2-х вольт на ячейку. Поэтому, если у нас 12 вольт - мы делим их на 6 ячеек и получаем на каждой по 2 вольта.

А теперь упрощаем - просто разделим ёмкость на 6 частей пластинами- в результате получится 6 ячеек, соединённых последовательно на каждой ячейке будет по 2 вольта каждая внутренняя пластина с одной стороны будет плюсом, а с другой минусом. Итак - урок номер 1 усвоили = подавать маленькое напряжение.

Теперь 2-ой урок экономичности: Расстояние между пластинами

Чем больше расстояние - тем больше сопротивление, тем больше потратим тока для получения литра газа. Чем меньше расстояние - тем меньше потратим Ватт в Час на Литр газа. Далее буду пользоваться именно этим термином - показатель экономичности электролизёра / Из графика видно, что чем ближе находятся пластины друг к другу - тем меньше напряжение требуется для прохождения одного и того же тока. А как известно выход газа прямо пропорционален количеству тока прошедшего через электролит.

Перемножая более маленькое напряжение на ток - мы получим меньше ватт на то же количество газа.

Теперь 3-й урок. Площадь пластин

Если мы возьмём 2 гвоздя и используя первые два правила расположим их близко и подадим на них 2 вольта - то газу получится совсем мало, так как они пропустят очень мало тока. Попробуем при тех же условиях взять две пластины. Теперь количество тока и газа будет увеличено прямо пропорционально площади этих пластин.

Теперь 4-й урок: Концентрация электролита

Используя первые 3 правила возьмём большие железные пластины на маленьком расстоянии друг от друга и подадим на них 2 вольта. И опустим их в водичку, добавив одну щепотку соды. Электролиз пойдёт, но очень вяло, вода будет нагреваться. Ионов в растворе много будет, сопротивление будет маленькое, нагрев уменьшится а количество газа увеличится

Источники: 505sovetov.ru, all-he.ru, zabatsay.ru, xn----dtbbgbt6ann0jm3a.xn--p1ai, domashnih-usloviyah.ru

Медный бунт

Медный бунт произошел в Москве 25 июля 1662 года. Причиной послужило следующее обстоятельство. Россия вела затяжную войну...

Актуальность этого вопроса на сегодняшний день достаточно высока по причине того, что сфера использования водорода чрезвычайно обширна, а в чистом виде он практически нигде в природе не встречается. Именно поэтому было разработано несколько методик, позволяющих осуществлять добычу этого газа из других соединений посредством химических и физических реакций. Об этом и рассказывается в приведенной статье.

Способы получения водорода в промышленных условиях

Добыча путем конверсии метана . Вода в парообразном состоянии, предварительно нагретая до 1000 градусов по Цельсию, смешивается с метаном под давлением и в присутствии катализатора. Способ этот интересный и проверенный, также надо отметить, что он постоянно совершенствуется: ведется поиск новых катализаторов, более дешевых и эффективных.

Рассмотрим самый древний метод получения водорода - газификацию угля . При условии отсутствия доступа воздуха и температуре в 1300 градусов Цельсия, нагревают уголь и водяной пар. Таким образом, происходит вытеснение водорода из воды, и получается углекислый газ (водород будет наверху, углекислый газ, также получаемый в результате проводимой реакции, – внизу). Таким будет разделение газовой смеси, все очень просто.

Получение водорода путем электролиза воды считается самым простым вариантом. Для его осуществления необходимо залить в емкость раствор соды, поместить также туда два электрических элемента. Один будет заряжен положительно (анод), а второй – отрицательно (катод). При подаче тока водород отправится на катод, а кислород - на анод.

Electrolysis of Water

Получение водорода по методике частичного окисления . Для этого используется сплав алюминия и галлия. Его помещают в воду, что приводит к образованию водорода и оксида алюминия в процессе реакции. Галлий необходим для того, чтобы реакция произошла в полном объеме (этот элемент не позволит алюминию окислиться преждевременно).

В последнее время приобрела актуальность методика использования биотехнологий : при условии недостатка кислорода и серы, хламидомонады начинают интенсивно выделять водород. Очень интересный эффект, который сейчас активно изучается.


Chlamydomonas

Не стоит забывать и еще один старый, проверенный метод добычи водорода, который заключается в использовании разных щелочных элементов и воды. В принципе, эта методика осуществима в лабораторных условиях при наличии необходимых мер безопасности. Таким образом, в ходе реакции (она протекает при нагревании и с катализаторами) образуется оксид металла и водород. Остается только его собрать.

Получить водород путем взаимодействия воды и угарного газа можно только в промышленных условиях. Образуется углекислый газ и водород, принцип их разделения описан выше.


Carbon monoxide

Возможно ли получить водород в лабораторных или домашних условиях?

Сделать это можно, однако лучше не стоит. Причиной тому является взрывоопасность водорода. Кроме того, все реакции с его выделением являются экзотермическими, то есть сопровождаются интенсивным выделением тепла. В том случае, если вы решили синтезировать водород в домашних условиях и отступать от своих намерений не собираетесь, то делать это надо будет на улице. Если возникнет аварийная ситуация, так меньше будет пострадавших. В лучшем случае вы отделаетесь только ожогами от тепла, которое возникнет в ходе химической реакции.

Для того чтобы добыть водород в домашних условиях, используется несколько реагентов: медный купорос, кухонная соль, алюминий и вода. Сам процесс включает в себя несколько этапов.

  1. Необходимо смешать раствор купороса с раствором хлорида натрия, в результате чего получится раствор зеленого цвета.
  2. В приготовленный раствор помещаем алюминий.
  3. Скопившиеся вокруг алюминия пузырьки – не что иное, как водород. Когда алюминиевая фольга покроется красным налетом, это будет свидетельствовать о том, что медь полностью вытеснена алюминием из раствора.

Опять-таки, если вы решили работать над получением водорода в домашних условиях, то необходимо позаботиться о том, чтобы в результате вашей деятельности не пострадали окружающие. показано, какие интересные и безопасные опыты с водородом можно провести дома.

1 Лекция 5 Получение водорода электролизом воды Физико-химические основы электролиза воды Основные типы электролизеров и их характеристики Щелочные электролизеры Электролизеры с твердым полимерным электролитом Твердооксидные электролизеры


2 Физико-химические основы процесса электролиза воды CuSO4 - - - - Cu + + + + + + Электрод: - электронный проводник, погруженный в ионный проводник (раствор электролита, расплав) или соприкасающийся с ним. На межфазной границе раздела электрод - раствор протекают электродные процессы, и устанавливается разность потенциалов - электродный потенциал, значение которого зависит от природы протекающей на поверхности электрода электрохимической реакции. Непосредственно измерить можно только разность электродных потенциалов нескольких электродов. Практическое значение имеют относительные электродные потенциалы, представляющие собой разность электродного потенциала рассматриваемого электрода и электрода сравнения, электродный потенциал которого условно принят равным нулю. Равновесный электродный потенциал: напряжение ячейки, составленной из этого электрода и электрода сравнения, при условии, что на всех фазовых границах ячейки установилось равновесие. Электродный потенциал Е, соответствующий условиям равновесия, связан с изменением энергии Гиббса?G электрохимической реакции, протекающей на электроде (электродной реакции), соотношением (1): z - число электронов, участвующих в электрохимическом равновесии; F-число Фарадея:F=NAe (2)


3 Значение электродного потенциала зависит от концентрации с или активности аМе веществ, участвующих в электрохимическом равновесии. Для металлических электродов (3): R-универсальная газовая постоянная; Т - температура; Е0 - нормальный электродный потенциал, соответствующий электродному потенциалу системы, в которой активность находящихся в электрохимическом равновесии веществ равна единице. Электрод может состоять из нескольких последовательно включенных фаз, и на каждой из межфазных границ может осуществляться какая-то отдельная стадия полной электродной реакции. Поэтому электродную реакцию следует рассматривать как суммарный, итоговый процесс, который слагается из ряда последовательных стадий. Если вместо изменения энергии Гиббса подставить алгебраическую сумму химических потенциалов?i, всех компонентов полной реакции, то ЭДС ячейки (4): где?i-- стехиометрический коэффициент компонента i в суммарной реакции ячейки. Продифференцировав (1) по температуре, получим температурный коэффициент ЭДС ячейки (5):


4 Обратимое выделение или поглощение теплоты в электрохимической ячейке определяется величиной (6): где?H - изменение энтальпии в полной реакции или ее тепловой эффект. Если?H ?G, то в работу превращается больше энергии, чем освобождается при реакции, и ячейка охлаждается. Т.е., выделение или поглощение теплоты при обратимой работе ячейки определяется соотношением (7): С учетом уравнения Гиббса - Гельмгольца (8): и 1, 5, зависимость для энтальпии (теплового эффекта реакции) (9): Зависимость ЭДС ячейки от давления, важная для газовых электродов (из 1), (10): ?V -изменение объема системы при стехиометрическом превращении на 1 моль образовавшегося газа. Пренебрегая изменениями объемов жидких и твердых фаз:


5 для получения 1 м3 (90 г) водорода требуется 805 г воды и 2394 А-ч электричества. Затраченная в этом процессе электроэнергия, кВт-ч, равна произведению количества электричества на падение напряжения на ячейке U(B): Wel=2,394U Теоретическое значение ЭДС ячейки Ет, необходимой для осуществления обратимой реакции разложения воды, определяется соотношением соответствует той части энергии, которую необходимо подвести в виде работы: Тепловой эффект реакции разложения воды – это?H - сумма работы и теплоты, затраченных в процессе. Соответствующее тепловому эффекту напряжение ячейки Еq=?H/zF называется термонейтральным напряжением. Оно равно напряжению ячейки в гипотетическом изобарно-изотермическом обратимом процессе, при котором отсутствует тепломассообмен с внешней средой и вся необходимая для реакции энергия (сумма необходимых теплоты и работы) подводится в виде электроэнергии. Т.к. ?H очень слабо зависит от температуры, Еq практически постоянно и при электролизе воды с учетом теплоты испарения составляет.Е"q=1,481 В, а при электролизе водяного пара Е"q=1,25 В. Доля работы, необходимой для разложения воды, по отношению к полным затратам энергии в электрохимическом процессе? равна отношению Ет/Еq, т.к. Ет для воды с ростом Т уменьшается (при атмосферном давлении dЕт/dТ=-0,25 мВ-К-1) при повышении Т доля теплоты возрастает и при T~5000 К практически вся энергия, необходимая для разложения воды, используется в виде теплоты (?~0).


6 Зависимость Ет и затрат энергии в реакции разложения воды при Р=0,1 МПа (теоретические значения Wтэл и Wттепл найдены как Wтэл = 2,394Ет = 2,394Еq? кВт-ч и Wттепл = 2,394 (Еq – Ет) = 2,394Еq (1 - ?) кВт ч.) В обратимой реакции при электролизе воды наряду с затратами электроэнергии принципиально возможно непосредственное преобразование теплоты, подводимой к ячейке, в химическую энергию топливно-окислительной композиции (водорода и кислорода) в количестве Wттепл.


7 В области (3) Е"q ?U? Е"q при электролизе воды подводимая извне теплота затрачивается на испарение воды, при электролизе пара, выделяющаяся теплота, отдается во внешнюю среду. В области 2 затраты электроэнергии на электролиз меньше низшей теплоты сгорания водорода в кислороде, в области 3 - больше низшей, но меньше высшей. При U>Е"q выделяющаяся в ячейке теплота отдается во внешнюю среду и затраты электроэнергии на производство водорода превышают высшую теплоту сгорания получаемой топливно-окислительной композиции (область 4). Термодинамически более выгодно вести процесс электролиза при высоких температурах и значениях (U, близких к Ет, с подводом теплоты от внешнего источника. При напряжении ячейки U<Ет (обл1) получение водорода из воды электролизом невозможно. При Ет

8 В условиях ЭХ равновесия поверхность электрода в растворе имеет нулевой заряд: скорости разряда ионов и ионизации сбалансированы. Скорости прямой и обратной электродных реакций при равновесном электродном потенциале, выраженные в электрических единицах, называются током обмена. Ток обмена является зависит от активности реагирующих ионов? и анергии активации электродной реакции (14): Iо - стандартный ток обмена (при а=1); а - кажущийся коэффициент переноса ионов в растворе; z-заряд иона; F-число Фарадея; ? - фактический электродный потенциал; ?0 - равновесный электродный потенциал. Величина?? = ? - ? 0 показывает, насколько должен быть удален электродный потенциал от равновесного его значения для обеспечения необходимой скорости реакции разряда или образования ионов I, и называется перенапряжением (поляризацией) электрода. При постоянной активности ионов в растворе (из 14), ?? -линейная функция логарифма I, что выражается известным уравнением Тафеля: ??=A-BlnI где А и В - константы. Константа В -тафелевский наклон (параметр Тафеля), пропорциональна температуре, обратно пропорциональна кажущемуся коэффициенту переноса и определяется процессами в растворе и материалом электрода, но не состоянием его поверхности. Константа А определяется процессами на межфазной границе и в большей степени зависит от материала электрода и состояния его поверхности.


9 Поляризация электродов: возникает из-за конечной скорости разряда или образования ионов (химическая поляризация), влияет на протекание электродных процессов. Концентрационная поляризация??конц: Наблюдается при значительных плотностях тока и продолжительном электролизе. Связана с замедленной скоростью поступления ионов из объема раствора к поверхности электродов, которое осуществляется диффузией через тонкий слой раствора вблизи поверхности. На поверхности электрода в единицу времени нейтрализуется I/zF ионов. С ростом поляризации электрода поток ионов к его поверхности возрастает, так как уменьшается их концентрация на самой поверхности. Это возрастание ограничено предельным током Iпред, который соответствует концентрации ионов на поверхности электрода, равной нулю, т. е. когда все ионы, способные за счет диффузии в единицу времени попасть из объема раствора к поверхности электрода, немедленно разряжаются. Дальнейший рост поляризации электрода уже не приводит к возрастанию I. Предельная плотность тока определяется уравнением (16): где Di - коэффициент диффузии ионов; с - объемная концентрация ионов; ? - толщина диффузионного пограничного слоя; ni - число переноса ионов; КD - константа скорости диффузии.


10 Концентрационная поляризация??k логарифмически зависит от плотности тока (17): С ростом Т КD и Iпред возрастают и??k падает. Перемешивание раствора приводит к уменьшению? и снижению??k. При протекании тока в растворе возникает омическое падение напряжения??ом в электролите и в диафрагме, разделяющей электроды. Кроме того, выделение на электродах газообразных продуктов электролиза в виде пузырьков газа приводит к увеличению удельного сопротивления электролита вблизи электрода и уменьшению площади поверхности контакта электролит - электрод, т. е. к увеличению омических потерь (18): где??ом - омические потери в электролите и пористой диафрагме; ??кат - катодное перенапряжение (суммарное?? определяемое процессами на катоде); ??ан - анодное перенапряжение (суммарное??, определяемое процессами на аноде).


11 В реальных электролизерах всегда U>Еq, т. е. теплота выделяется в окружающую среду. Распределение потерь напряжения в щелочном электролизере при I=300 мА-см-2, Т= 353 К, Eт=1,18 В и U=2.40 В: Распределение потерь напряжения Суммарные энергетические потери в электролизной ячейке складываются из энергетических потерь на электродах, характеризующихся тафелевской зависимостью поляризационных кривых, и из омических потерь в электролите и местах контактов, пропорциональных плотности тока. Обобщенная вольт-амперная характеристика электролизной ячейки имеет вид (19): U=A+BlnI+rI а эффективное сопротивление ячейки rэф=dU/dI зависит от плотности тока: rэф=B/I +r и не зависит от активности (каталитичности) электродов.


12 Тепловой баланс При отсутствии утечек тока все составляющие теплового баланса ячейки можно выразить в электрических единицах. В ячейке выделяется джоулева теплота. С уходящими газами отводится теплота Qг, через холодильники Qхол, путем потерь через стенки Qст. В общем балансе надо учесть отвод энергии в виде химической энергии Qхим (теплоты сгорания в условиях работы ячейки) полученных водорода и кислорода. С ростом нагрузки доля потерь теплоты через стенки Qст в общем балансе теплоты уменьшается, а Qхим и Qг остаются неизменными. Суммарные потери теплоты Qпот=Qхим+Qг+Qст - кривая 1. Выделение энергии в ячейке определяется ее вольт-амперной характеристикой (кривая 2). В точке a энерговыделение и потери равны. При работе в режиме IIа необходим отвод теплоты через холодильники. Практически работа электролизера всегда осуществляется при I>Ia.


13 Удельные энергозатраты Затраты электроэнергии на единицу продукции при электролизе зависят от плотности тока. С увеличением I возрастают перенапряжения на аноде и катоде, омические потери, утечки тока и другие потери энергии, что приводит к росту затрат электроэнергии на единицу продукции. Характеристики электролизера ФВ-500 Под КПД электролизера?э принимают отношение низшей теплоты сгорания 1 м3 водорода к количеству электроэнергии, которую нужно затратить для его получения при той же температуре.


14 Основные типы электролизеров и их характеристики По конструкции и схеме включения в цепь электродов все электролизеры можно подразделить на два типа -с монополярными и биполярными электродами. Электролизеры с монополярными электродами изготовляют обычно ящичного (баночного), а с биполярными - фильтр-прессного типов. В них анод (катод) каждой ячейки соединен электрически с катодом (анодом) соседней ячейки, т. е. ячейки соединены последовательно. По виду электролита: с водным щелочным электролитом (рабочая температура - до 500 К); с катионообменной мембраной (рабочая температура- до 423 К); с твердым окисным электролитом (рабочая температура 1100-1300 К.)


15 Электролизеры со щелочным электролитом Обычно фильтр-прессного типа. Применяются два типа конструкций электролизных ячеек. В ячейке на рис.а, каталитический слой 2 нанесен непосредственно на плоскую биполярную металлическую пластину 3 и генерация газа происходит на наружной поверхности каталитического слоя; пористая диафрагма-сепаратор 1 укреплена на распорках 4 в зазоре, заполненном электролитом. Омические потери складываются из потерь в диафрагме и в объеме электролита, содержащем газовую фазу, В ячейке на рис. б каталитический слой 2 нанесен непосредственно на заполненную электролитом пористую диафрагму-сепаратор 1, генерация газа происходит на внутренней поверхности каталитического слоя; контактирующая с каталитическими слоями биполярная металл. пластина 3 разделяет две соседние ячейки и, обеспечивает сепарацию продуктов электролиза. Омические потери складываются из потерь в диафрагме и на контактном сопротивлении между электродами и биполярной пластиной.


16 Электродные реакции в щелочном электролизере: На катоде: На аноде: Наиболее существенны поляризационные потери на электродах и омические потери в электролите. Снижение поляризации электродов достигается увеличением тока обмена электродных реакций, развитием удельной поверхности катализаторов и повышением эффективности ее использования. Ток обмена реакций зависит от материала (каталитичности) электродов и в соответствии с законом Аррениуса увеличивается с ростом температуры. Наиболее активными катализаторами катодного процесса выделения водорода являются металлы Ni, Pd, Рt, хорошо адсорбирующие водород. С точки зрения экономики целесообразно использовать неплатиновые катализаторы. Для никелевых катодов, при температурах 298-373 К энергия активации процесса выделения водорода при I=1 А-см-2 составляет около 41 кДж-моль-1 Н2, при увеличении температуры от 298 до 363 К ток обмена возрастает от 10-7 до 2*10-5 А-см-2.


17 Катализаторы анодного процесса выделения кислорода. Ряд электрохимической активности металлов для этого процесса имеет видNi>Ir>Рt. Типичные характеристики анодного процесса выделения кислорода на металлических катализаторах на основе Ni при электролизе водного раствора 30 % КОН при 353 К, I=2-10-5 А-см-2: Пути повышения эффективности: Развитие поверхности катализатора. Гидрофобизация.-приводит к уменьшению отрывных диаметров газовых пузырьков, уменьшению степени заполнения поверхности газовой фазой и к увеличению поверхности контакта электролит - катализатор, т. е. к увеличению активности электродов. Гидрофобизация в большей степени влияет на эффективность анодного процесса выделения кислорода, чем на процессы на катоде, в связи с меньшими диаметрами пузырьков водорода.


18 Проблема диафрагм Совершенствование пористых разделительных диафрагм (мембран) с целью уменьшения омических потерь. Металлокерамические диафрагмы - хорошая коррозионная стойкость при повышенных температурах и относительно низкое сопротивление. В никелевых пористых дифрагмах с пористостью около 50%, размерами пор от 2 до 30 мкм и толщиной от 0,4 до 0,7 мм потери напряжения в 30 % КОН при Т=353 К и I~2 А-см-2 составляют от 0,1 до 0,25 В. Пористые диафрагмы, не обладающие электронной проводимостью: уменьшается опасность коротких замыканий и увеличивается надежность работы электролизера. Наиболее распространенным материалом для таких диафрагм сегодня является асбестовая ткань или асбокартон, который, однако, недостаточно стабилен и подвержен коррозии при температурах Т> 350 К. Одной из важнейших задач является разработка коррозионно-стойких при повышенных температурах и прочных пористых материалов, не обладающих электронной проводимостью, для диафрагм щелочных электролизеров. В качестве таких исходных материалов в последнее время активно исследуются сульфонированный тетрафторэтилен, титанат бария, гексатитанат калия. Перспективным материалом для диафрагм может оказаться пористый окисленный никель.


19 Пути совершенствования щелочных электролизеров: увеличение температуры и давления. Увеличение температуры в ЩЭ сопровождается повышением давления для предотвращения выкипания щелочи. При возрастании р, уменьшаются размеры газовых пузырьков и объемное газосодержание электролита, т. е. уменьшаются омические потери в нем, уменьшаются степень заполнения поверхности электродов газовой фазой и отрывные диаметры газовых пузырьков, увеличивается объемное заполнение пористого электрода жидким электролитом, т. е. повышается эффективность использования поверхности электродов. Поляризационные характеристики никелевых электродов: Температуры: 1-353; 2-423; 3 - 483; 4 - 538 К


20 Основные характеристики мощных щелочных электролизеров для работы под давлением Плотность тока, кА-м-2 1-2 Напряжение на ячейке, В 1,75-1,9 Затраты энергии на производство водорода, кВт-ч-м-3 4,2-4,7 Рабочая температура, К 380-400 Рабочее давление, МПа 3-4 Тип электролита 25-30 % КОН Производительность единичного агрегата по водороду, м3-ч-1 100-750


21 Твердополимерные электролизеры Мембрана Nafion Протонообменная мембрана Nafion® представляет собой пленку из полимера, сочетающего гидрофобную основную цепь и боковые цепи, содержащие кислотные группы (гидрофильная часть). При наличии воды в полимере, она локализуется вблизи кислотных групп, образуя наноразмерную гидратную область. Гидрофильная часть полимера, обеспечивает протонный транспорт а гидрофобная часть, стабилизирует морфологию мембран, обеспечивая их механическую прочность. Достоинства ТПЭ: Экологическая чистота возможность работы при низких напряжениях на ячейке, больших плотностях тока, высоких давлениях и температурах Высокая эффективность (80 – 90%) Высокая чистота водорода (>99.999%) Твердый электролит – нет риска утечек, как в щелочном Э-ре


22 Если мембрану увлажнить, то кислотные группы –SO3H гидратируются, диссоциируют на SO-3 и H+, создавая протонную проводимость. На аноде в контакте с водой образуются гидроксильные группы и освобождаются протоны. X+H2O>X-OHads + H+ + e- Гидроксильные связи рвутся, образуя дополнительные протоны: X-OHads > X-O + H+ + e- Протоны, (гидратированные H+.nH2O), мигрируют через мембрану, прыгая от одной сульфо-группы к другой, а на катоде собирают электроны, образуя Н2. X-O связи на аноде рвутся, образуя О2. Принцип работы


23 Полимерная мембрана – кислота, - нужно использовать коррозионно – стойкие материалы. (электроды). Катодные материалы: Pt Pd Анодные материалы: Ir, IrO2, Rh, Pt, Rh-Pt, Pt-Ru Биполярные пластины – графит Удобно соединять ячейки последовательно – можно использовать более дешевые ИП Обычные параметры: Т= 80-150°C, давление до 30 Атм., плотность тока до 2 А/см2, напряжение на ячейке 1.4 - 2 В Устойчивы к изменениям питания, поэтому хорошо сочетаются с солнечными элементами. Дорогие, т.к. используются драгметаллы. Нужна чистая вода Нужно контролировать перепад давлений на мембране.


24 Твердооксидные электролизеры Затраты энергии на электролиз пара: (241.8 кДж/моль), электролиз воды: 285.83 кДж/моль. Термонейтральный потенциал равен 1.287 В при 800°C. Расход электроэнергии снижается при увеличении Т, т.к. электрическая энергия частично замещается тепловой. Отношение?G/ ?H =93% при 100 С, 79 % при 1000 С. Теплота может подводиться аллотермически и автотермически Снижается рабочее напряжение ячейки (0,95 – 1,33 В).


25 В ТОЭ используется керамический электролит (стабилизированная иттрием окись циркония), обладающая проводимостью по (O2-) при температурах ~1000°C . The operating temperature is decided by the ionic conductivity of the electrolyte. Реакция на катоде: 2H2O+4e- > 2H2+2O2- Реакция на аноде: 2O2- > O2+4e- (2.2.21)

Электролизом воды называется физико-химический процесс, при котором под действием постоянного электрического тока вода разлагается на кислород и водород. Постоянное напряжение для ячейки получается, как правило, выпрямлением трехфазного переменного тока. В электролитической ячейке дистиллированная вода подвергается электролизу, при этом химическая реакция идет по следующей известной схеме: 2Н2O + энергия -> 2H2+O2.

В результате разделения на части молекул воды, водорода по объему получается вдвое больше чем кислорода. Перед использованием газы в установке обезвоживаются и охлаждаются. Выходные трубопроводы установки всегда защищены возвратными клапанами для предотвращения возгораний.

Непосредственно каркас конструкции изготавливается из стальных труб и толстых листов стали, что придает всей конструкции высокую жесткость и механическую прочность. Газовые резервуары обязательно тестируются под давлением.

Электронный блок устройства контролирует все стадии процесса производства, и позволяет оператору следить за параметрами на панели и на манометрах, чем обеспечивает безопасность. Эффективность электролиза такова, что из 500 мл воды получается около кубометра обоих газов с затратами около 4 квт/ч электрической энергии.

По сравнению с прочими методами получения водорода, электролиз воды отличается целым рядом преимуществ. Во-первых, в ход идет доступное сырье - деминерализованная вода и электроэнергия. Во-вторых, во время производства отсутствуют загрязняющие выбросы. В-третьих, процесс целиком автоматизирован. Наконец, на выходе получается достаточно чистый (99,99%) продукт.

Поэтому электролизные установки и получаемый на них водород, находят сегодня применение во многих отраслях: в химическом синтезе, в термической обработке металлов, в производстве растительных масел, в стекольной промышленности, в электронике, в системах охлаждения в энергетике и т. д.


Установка для электролиза устроена следующим образом. Снаружи расположена панель управления генератором водорода. Далее установлены выпрямитель, трансформатор, распределительное устройство, система деминерализованной воды и блок для ее пополнения.

В электролитической ячейке на стороне катодной пластины получается водород, а на стороне анодной - кислород. Здесь газы покидают ячейку. Они разделяются и подаются в сепаратор, затем охлаждаются деминерализованной водой, после чего отделяются под действием гравитации от жидкой фазы. Водород направляется в промыватель, где из газа удаляются капли щелока и происходит охлаждение в змеевике.

Наконец, водород проходит фильтрацию (фильтр на верху сепаратора), где капельки воды полностью устраняются, и поступает в сушильную камеру. Кислород обычно направляется в атмосферу. Деминерализованная вода подается в промыватель насосом.

Щелок используют здесь для повышения электропроводности воды. Если эксплуатация электролизера идет штатно, то щелок пополняют единожды в год в небольшом количестве. Твердое едкое кали кладется в резервуар для щелока, заполненный на две трети деминерализованной водой, после чего насос перемешивает его в раствор.

Система водяного охлаждения электролизера служит двум целям: охлаждает щелок до 80-90°C и охлаждает полученные газы до 40°C.

Система анализа газа принимает пробы водорода. Капли щелока в сепараторе отделяются, газ подается к анализатору, давление понижается, проверяется содержание в водороде кислорода. Прежде чем водород будет направлен в резервуар, во влагомере будет измерена точка росы. Сигнал будет подан оператору или на ПК, чтобы решить, подходит ли полученный водород для направления в накопительный резервуар, соответствует ли газ условиям приема.

Рабочее давление установки регулируется при помощи системы автоматического контроля. Датчик получает информацию о давлении внутри электролизера, затем данные направляются на ПК, где сравниваются с заданными параметрами. Далее результат преобразуется в сигнал порядка 10 мА, и рабочее давление удерживается на заданном уровне.


Рабочая температура установки регулируется пневматическим мембранным клапаном. Компьютер аналогичным образом сравнит температуру с заданной, и разница будет преобразована в соответствующий сигнал для .

Безопасность работы электролизера обеспечивается системой блокировки и сигнализации. В случае утечки водорода, обнаружение происходит автоматически детекторами. Программа при этом сразу отключает генерацию и запускает вентилятор для проветривания помещения. Переносной детектор утечки находится обязательно у оператора. Все эти меры позволяют достичь высокой степени безопасности при эксплуатации электролизеров.

19 сентября 1783 г. в присутствии короля Франции Людовика воздушный шар с нагретым воздухом, построенный братьями Монтгол поднялся вверх, неся на своем борту утку, петуха и овцу. При этом был зг сирован первый несчастный случай в истории аэронавтики: овца лягнула ха и сломала ему крыло. Тем не менее эксперимент был признан удачным, убедило людей в будущем успехе воздушных путешествий. Уже 21 ноября же года де Розьер и маркиз д’Арландес поднялись в воздух на 150 м в в

Их полет длился 25 мин. Стоит отметить, что в этот раз овцу с собой не взяли, да и сами братья Мотгольфьер предусмотрительно остались на земле.

Воздушные шары на водороде появились удивительно быстро - 1 декабря "83 г., спустя всего 10 дней после первого полета воздушного шара с человеком на борту, Жак Шарль и один из братьев Роберт1 > совершили подъем на шаре, . .полненном водородом. Эксперимент оказался не слишком удачным. После кроткого перелета Роберт сошел на землю, чтобы поприветствовать зрителей, юлюдавших за полетом. При этом облегченный воздушный шар стал стреми - іьно набирать высоту и поднялся на 2700 м, унося с собой взволнованного Ларля, который в конце концов догадался открыть клапан, выпустив некоторое количество водорода, и таким образом безопасно опустился на землю. Шарль - Іфизик, открывший закон, известный нам как «закон Шарля», согласно которому їьем фиксированной массы идеального газа при постоянном давлении прямо ропорционален его температуре. Этот закон, разумеется, является следствием равнения состояния идеального газа.

Интересно отметить, что более простая технология использования горячего возду - V: для подъема воздушных шаров оказалась более жизнеспособной и приобрела ши­кую популярность тогда как водород для этих целей сейчас не используется. Первоначально водород получали пропусканием водяного пара над раскален - ыми докрасна железными опилками. Железо вступает в реакцию с кислородом, зобождая при этом водород2*:

3Fe + 4Н20 ^ Fe304 + 4Н2. (1)

Затем газ очищался путем барботирования в воде.

При взаимодействии железа с кислородом образуется два вида оксидов - ге - этит (Fe II) в виде солей бледно-зеленого цвета и магнетит (Fe III) в виде со - jr - й желтого, оранжевого и коричневого оттенков. Магнетит Fe304 - природ - ■ й минерал, который входит в состав ферритов, используемых в некоторых пекгронных приборах.

После 1850 г. для получения водорода часто использовали реакцию железа с рной кислотой, что привело к удорожанию водорода из-за дороговизны сер­ії кислоты.

В настоящее время небольшие количества водорода получают, проводя ре - лию между алюминием и каустической содой NaOH. Иногда водород, полу-

1ари Ноэль Роберт. Как ни странно, ему и его брату Анне Джин Роберт, родители дали Lie некие имена.

г Использование реакции железа с водой в настоящее время рассматривается как один способов ■ р нения водорода (см. гл. 9).

чаемый этим способом, используют для наполнения метеорологических Однако основную массу производимого в мире водорода получают из ис мых топлив. Нефть, нафта и природный газ все еще являются основным с для производства водорода. Из-за истощения запасов этих природных ре разрабатываются методы получения водорода с помощью угля, запасы ко; пока еще имеются в избытке.

Методы получения водорода можно разделить на несколько категорий, которых отметим следующие:

1. Производство водорода в небольших количествах для пищевой про ленности и других мелких потребителей. Чаще всего для этих целе пользуются электролитические методы, описанные ниже, так как по емый с их помощью водород обладает высокой степенью чистоты.

2. Производство водорода в промышленных масштабах на стационарныч приятиях, например на предприятиях по производству аммиака.

3. Производство водорода в малых количествах в компактных автоно установках для использования на транспортных средствах в топлн элементах. Эта область применения водорода появилась совсем не и, вероятно, в будущем будет представлять большой экономическим терес.

4. Производство водорода в автономных установках для использован жилых домах или для локального производства тепловой и электриче энергии.

Водород можно получать также из углеводородов и спиртов в процессзх стичного окисления, паровой конверсии или термического разложения. Прол данных методов является так называемый синтез-газ - смесь угарного газа и водорода Н2.

При использовании любой из указанных выше реакций в системе подгот топлива для питания топливного элемента чистым водородом эффективн системы Г) может быть определена как отношение низшей теплоты сгора: водорода, поступившего в топливный элемент, к сумме высшей теплоты С! рания исходного топлива и максимальной теплоты, затраченной на наг системы.

Реакция частичного окисления может быть осуществлена как с исполь нием катализаторов (автотермическая реакция), так и без их использования.

Частичное окисление предпочтительно применять, когда исходным ве ством для получения водорода является тяжелая нефтяная фракция, пар" конверсия больше подходит для работы с легкими фракциями. Тем не ме небольшие системы подготовки топлива для использования на автомобильн

транспорте, в основе действия которых лежит реакция частичного окисления, ?рьезно изучаются.

В реакции частичного окисления окислителем служит воздух, поэтому продук­ті реакции является смесь водорода и азота. Наличие примеси азота приводит уменьшению парциального давления водорода и, как следствие, к понижению чодной мощности топливного элемента.

Реакция частичного окисления протекает при взаимодействии топлива с ог - ниченным количеством кислорода:

С„Нт + ^ 02 -» и СО + у Н2. (2)

Если в качестве топлива используется метан, то уравнение реакции имеет вид

СН4 + |о2 ^СО+2Н2. (3)

Преимущественное протекание этих реакций связано с тем, что сродство слорода к углероду намного больше, чем к водороду.

В процессе паровой конверсии протекает реакция топлива с водяным паром, ""езультате которой водород, входящий в состав воды, объединяется с водоро-

I. входящим в состав углеводорода, при этом азот в продуктах реакции от-

ствует. В этом заключается основное отличие данного процесса от реакции

гичного окисления. Паровая конверсия обобщенного углеводорода протекает ответствии с уравнением

С„Нт + «Н20 -> «СО + Н2. (4)

Эта реакция известна также как углеродно-паровая реакция.

Для примера рассмотрим чистый углерод (положим т = О, чтобы исключить □род из состава углеводорода). Отметим, что в этом случае весь водород по - ччется только из воды, а топливо (углерод) обеспечивает реакцию энергией:

С + Н,0 -» СО + Н2. (5)

Приведем также уравнение паровой конверсии метана:

Термическое разложение спиртов может быть проил/іюстрировано реакциями Іложеі іия метанола и этанола, уравнения которых имеют вид:

СН30Н -» СО + 2Н2 (7)

С2Н5ОН -> СО + н2 + сн4.

Очевидно, что весь полученный водород извлечен из использованного лива.

Синтез-газ представляет собой смесь угарного газа СО и водорода Н торая является продуктом всех приведенных выше реакций. Синтез-газ использоваться непосредственно как топливо. Он также может быть при без дополнительной обработки в топливных элементах с расплавленным к. натным или керамическим электролитом. Однако использование синтез-га - j питания топливных элементов с твердым полимерным электролитом абсот недопустимо, так как в состав синтез-газа входит монооксид углерода СО

Синтез-газ используется в качестве топлива как для бытовых, так и для мышленных нужд, тем не менее низкая объемная плотность энергии этого лива делает нерентабельной его передачу на большие расстояния удаленн места производства потребителям. Для этой задачи газ может быть обе путем конверсии в метан (см. уравнение (14)). Эта реакция является осн большинства процессов газификации угля. Следует отметить, что синте токсичен, так как в его состав входит угарный газ.

Синтез-газ является важным сырьем при производстве удивительно боль числа химических веществ, многие из которых содержат существенно боль количество атомов водорода на один атом углерода, чем исходный синте По этой причине, а также для того, чтобы использовать синтез-газ в низкот пературных топливных элементах, необходимо проводить его обогащение родом. Этот процесс называют реакцией сдвига.

Химическую реакцию монооксида углерода с водой называют конве] монооксида углерода (реакцией сдвига). Продуктами реакции являются; кислый газ и водород:

СО + Н20 -> С02 + Н2 .

Использование конверсии позволяет в широком диапазоне изменять пар Н/С (количество атомов водорода на один атом углерода) для синтез-газа. Г менительно к топливным элементам конверсия СО используется для удал всего (или почти всего) монооксида углерода из синтез-газа.

В качестве примера рассмотрим получение водорода из природного газа (тана):

СН4 + Н20 СО + ЗН2,

СО + Н20 -» С02 + Н2

Заметим, что теплота сгорания метана составляет 890 МДж/кмоль, тогда как и сгорании 4 кмолей водорода выделяется 4 286 = 1144 МДж теплоты. Таким _азом. энергоемкость продуктов описанной выше реакции превышает энерго - лость исходных веществ, следовательно, реакция является эндотермической, лолнительная энергия подводится в виде теплоты, необходимой для проте - ия реакции. В стационарных установках эту теплоту обычно получают путем игания углеводородов:

В более компактных транспортных и бытовых установках удобным способом іучения необходимой теплоты является сжигание некоторого количества во - эда в реформате (см. примеры, приведенные ниже).

8.2.2.6. Получение метана из синтез-газа

Конверсия синтез-газа в метан, которая является частью процесса преобра - ания любых ископаемых топлив в обычно более ценный «природный газ», .швается метанированием. Кроме того что метанирование играет важную:ь в промышленности, оно также представляет интерес в рамках тематики й главы книги, так как на основе этой реакции можно разработать методику тения большей части монооксида углерода СО из водорода, получаемого из леродных топлив. Уравнение реакции имеет вид:

С02 + 4Н2 -» СН4 + 2НгО.

8.2.2.7. Метанол

Метанол является не только полноценным топливом и полезным химиче - .4 реагентом, но также и важным промежуточным звеном в процессе получе - многих других химических веществ. В немалой степени ценность метанола словлена тем, что это единственное вещество, которое может быть получено е іьно и с высокой эффективностью из синтез-газа. Эффективное получение гих веществ связано с проблемой разделения продуктов реакции.

Метанол может стать приоритетным видом топлива для автомобилей на ливных элементах. Получать его можно из синтез-газа:

СО + 2Н2 -» СН3ОН.

Эта реакция, открытая в 1902 г. химиками Сабатье и Сандеренсоч жит в основе процесса синтеза Фишера-Тропша, который получил кую известность в Германии во время Второй мировой войны. Техно, Фишера-Тропша используется для получения жидких синтетически лив из угля.

Структуры предприятий по производству метанола и аммиака имеют общего. Отличия между ними заключаются только в типе синтез-газа и заторах, используемых в реакторах.

Необходимо отметить, что состав конечного продукта, получаемого из с газа, определяется температурой и давлением, при которых проводят щ и выбором катализатора.

Метанол также может быть получен непосредственно из биомассы, например, как древесина.

Синтетической сырой нефтью называют жидкий продукт, получи _ путем ожижения угля. Ожижение является более эффективным прои преобразования угля, чем газификация. Для ожижения требуется не шое количество воды, а в качестве сырья могут использоваться любые с угля, в том числе и битуминозный уголь, который при газификации но спекается.

По существу, синтетическую сырую нефть получают одним из след> способов:

1. Синтез Фишера-Тропша, аналогичный процессу получения метатвла. личие заключается в том, что в разделении продуктов реакции в д случае нет необходимости. Вместо чистого метанола получают смеоЕ леводородов сложного состава.

2. Пиролиз, или сухая перегонка каменного угля, продуктами которог ляются вещества в газообразном, жиком и твердом (полукокс) сост > Уголь подвергают импульсному нагреву без доступа воздуха. Исполк ние импульсного нагрева обусловлено тем, что при длительном на жидкие фракции разлагаются, превращаясь в газы.

3. Непосредственное гидрирование угля.

4. Экстракция жидкой фазы с помощью растворителя. Используемые в процессе растворители получают на предварительном этапе прямого рирования.

Водород, получаемый методом электролиза (данный метод будет рассмотрен ниже), обладает практически приемлемой степенью чистоты. Водород, который производят с использованием ископаемых топлив, наоборот, содержит ботьшое количество примесей, среди которых углекислый газ С02 в высокой концентрации, нежелательные остатки монооксида углерода СО и в некоторых процессах существенное количество азота. Кроме того, само исходное сырье мо­жет содержать нежелательные компоненты, такие как сера и ее соединения. Их робходимо удалить, прежде чем подвергать сырье обработке.

8.2.3.1. Очистка от соединений серы

Если исходные вещества находятся в газообразном состоянии, соединения геры могут быть удалены из них путем распыления этих веществ в суспензии на - V нове кальция (например, известняке). Оксид серы S02, содержащийся в газе, прореагировав, образует сульфиты или сульфаты, которые затем удаляются.

Для преобразования серосодержащих молекул, имеющихся в тяжелой нефти, ъ сероводород H2S можно использовать катализаторы на основе дисульфида мо - юдена с небольшими добавками кобальта или никеля.

Существует и ряд других способов очистки от нефти.

8.2.3.2. Очистка от С02

Синтез-газ, так же как и биогаз (о котором будет рассказано в гл. 11), со - ржит большое количество диоксида углерода, который в лучшем случае дей - ьует как растворитель. При смешении диоксида углерода с водой образуется чушительная кислота, которая может повредить оборудование и трубопро - ды. Очистка от С02 является основной методикой уменьшения выброса этого j в атмосферу.

Удаление С02 может быть осуществлено одним из нескольких способов, почающих в себя следующие:

1. Химические методы, в которых используется гидрооксид кальция для пог­лощения диоксида углерода с образованием карбоната кальция. Затем, на следующем этапе, карбонат регенерируют, получая гидрооксид кальция.

2 Физические методы, основанные на зависимости растворимости С02 от температуры, которые называют термической цикловой адсорбцией (TSA). В качестве растворителей могут использоваться вода, метанол или один из этаноламинов (моно - или МЕА, ди - или DEA, и триэтаноламин или TEA).

3. В настоящее время самым распространенным способом очистки от С02 яв­ляется адсорбция с циклированием давления (PSA) - короткоцикловой адсорбцией. В основе этого процесса лежит способность некоторых ве­ществ, например некоторых цеолитов, избирательно адсорбировать ди­оксид углерода при высоком давлении, а затем при понижении давления

десорбировать его. Для повышения эффективности адсорберов п лагается использовать некоторые органические вещества. Сейчас исследования в этой области.

Частичная очистка от С02 может быть проведена с помощью спепи мембран, изготовленных, например, из ацетата целлюлозы. Эти мем обладают высокой проницаемостью для молекул С02 и низкой п емостью для молекул других веществ. Молекула С02 довольна кр> поэтому фильтрация не может быть основана на размере поры. Др словами, мембрана не работает как фильтр. Она не пористая. Дн углерода растворяется в веществе мембраны, диффундирует скво;; а затем выделяется с противоположной стороны. В этом процессе ется часть полезного газа если допустимая концентрация С02 на составляет 3 %, то будет восстановлено 85 % полезного газа: если емлемое значение концентрации С02 равно 8 %, то доля полезногоI составит 90-92 %.

Для выделения водорода из газовой смеси (с удалением большей части можно использовать металлические мембраны, которые пропускают моле* водорода Н2, но непроницаемы для других газов. Хотя их называют филь мембраны непористые, а их действие основано на диссоциации молекулы рода на атомы на поверхности мембраны с последующим образованием да, его быстрой диффузией через материал мембраны и рекомбинацией а водорода в молекулы на противоположной стороне мембраны. Таким об, механизм «фильтрации» водорода состоит из двух этапов: диссоциация мо. на атомы и образование гидрида с последующей его диффузией. Если в ка материала мембраны используется тантал, то образование гидрида и его зия протекают достаточно быстро, однако тантал является плохим катали ром процесса диссоциации. Палладий характеризуется высокой скоростью процессов, но этот металл очень дорогой. Одним из возможных решений проблемы может быть использование танталовых мембран с очень тонким ладиевым покрытием. При взаимодействии с водородом палладий стано хрупким, поэтому используют сплавы палладия с золотом, серебром или (обычно 60 % Ра и 40 % Си).

Для того чтобы обеспечить достаточно большую скорость «фильтрации» дорода через мембрану без существенного увеличения разности давлении, обходимо, чтобы толщина мембраны была небольшой. С одной сторонь приводит к экономии дорогостоящего палладия, но, с другой стороны, пла получаются очень хрупкими, вследствие чего в них могут появляться де в виде мельчайших отверстий. Просачивание лишних газов через эти отве нарушает избирательность «фильтра». Нанесение очень тонких, но максима;

равномерных слоев палладия на поверхности подложки с высокой пористостью позволит решить данную проблему. Уровень нежелательной пористости мембра­ны можно оценить путем измерения потока гелия, просачивающегося через нее. Гелий, в отличие от водорода, может проникать через мембрану только проходя через мельчайшие отверстия в ней.

Данные, полученные исследователями фирмы Idatech (рис. 8.1), демонстри - рют соотношение между толщиной мембраны и плотностью потока энергии, т. е. количеством энергии (в джоулях), переносимой в единицу времени в рас­чете на 1 м2 площади поверхности мембраны (энергия водорода рассчитывается го низшей теплоте сгорания). Данные были получены при температуре 400 °С и разности давлений на мембране 6,6 атм. Разница между проницаемостью мембран с гладкой и вытравленной поверхностью очевидна. Вытравленная по­верхность мембраны более шероховата и поэтому имеет большую площадь, чем ’алкая поверхность. Таким образом удается интенсифицировать поверхностное ізаимодействие материала мембраны с водородом. Эффект интенсификации на - более заметен на тонких мембрана^. чем на более толстых, так как в толстых мембранах скорость «фильтрации» водорода в основном определяется диффу - іией газа сквозь материал.

Палладий - это дорогостоящий металл. Топливный элемент мощностью 1 кВт, ютающий с КПД 60 %, потребляет в единицу времени количество водорода, римерно соответствующее 1,7 кВт энергии. Мембрана толщиной 17 мкм при. лепаде давления на ней 6,7 атм имеет производительность, эквивалентную дельной мощности 170 кВт/м2. Таким образом, общая эффективная площадь

мембраны должна составлять примерно 0,01 м2 или 100 см2. Если же обшая щадь палладиевой мембраны в 1,5 раза больше рассчитанной, а средняя толі - составляет 20 мкм, объем металла будет равен 0,3 см3. Доля палладия в сп используемом для изготовления мембраны, составляет 60 %, что соответст объему 0,18 см3 Масса такого количества палладия равна 2,2 г. В последнее сятилетие стоимость палладия существенно выросла в связи с его использо ем в автомобильных каталитических нейтрализаторах отработавших газов - нынешней цене 25 долл./г, стоимость палладия, необходимого для топлив элемента мощностью 1 кВт, составит 55 долл., что не так уж и мало.

Если окажется, что толщину мембраны можно уменьшить, например, или 2 мкм, затраты на материалы при изготовлении ТЭ существенно сниз Кроме того, конструктор может спроектировать мембрану с более низким репадом давления на ней.

8.2.4. Установки для получения водорода

Получение водорода из ископаемых углеводородов в промьіиі ных масштабах (чаще всего для производства аммиака) является отработаї технологией. Обычная схема процесса получения водорода показана на рис. Прежде всего, как правило, осуществляют очистку сырья от серы, так как отравляет катализаторы, которые используются на последующих этапах про са. Затем с помощью паровой конверсии получаю синтез-газ. Как отмечадЫ выше, реакция метана с водой является эндотермической, поэтому на даі « этапе требуется подвод теплоты.

Достатков ■

проводить при низких температурах для приближения к равновесным условиям. С другой стороны, в состоянии, близком к равновесному, сильно уменьшает­ся скорость реакции, поэтому были затрачены некоторые усилия на разработку хороших катализаторов. Сначала использовали катализаторы на основе никеля, обальта или оксида железа, при этом уровень рабочей температуры превышал "00 К. Применение современных катализаторов на основе меди позволило сни­зить рабочую температуру до 520 К. Газ, полученный в процессе конверсии СО, содержит большое количество диоксида углерода, смешанного с водородом. Та­ким образом, на следующем этапе необходимо удалить С02. Финальным этапом в процессе производства водорода является удаление остатков СО. В противном случае монооксид углерода будет отравлять катализаторы, использующиеся в процессе получения аммиака.

Компактные системы топливоподготовки для использования на автомобиль­ном транспорте и в жилых домах были разработаны чрезвычайно быстро. Пре - . е чем мы обсудим одну из таких миниатюрных установок, рассмотрим пример расчета характеристик такого устройства. Необходимые для расчета термодина - ические данные сведены в табл. 8.1.

Рассмотрим схему работы устройства для получения водорода из метанола, которое можно использовать на транспорте или в стационарных установках. В таком уст­ройстве, называемом системой топливоподготовки, может использоваться реакция прямого разложения метанола

СН3ОН -> СО + 2Н2 .

Если метанол сначала испарить, а потом сжечь, то при сжигании выделится 676,34 МДж тепловой энергии в расчете на 1 кмоль водяного пара, который является продуктом реакции горения. Если же метанол сначала разложить, то из 2 кмолей водорода, образованных в результате реакции разложения, можно получить 2 ■ 241,82 = 483,64 МДж и еще дополнительно 282,99 МДж из 1 кмоля монооксида углерода, т. е. общее количество энергии составит 766,63 МДж. Другими словами, при сжигании про­тестов разложения метанола можно получить больше энергии, чем при сжигании исходного топлива, так как реакция разложения является эндотермической и для ее эсуществления необходимо подвести 766,63 - 676,34 = 90,29 МДж теплоты в расчете на 1 кмоль метанола.

Важно удалить из смеси газов большую часть монооксита углерода, который имеет свойство отравлять катализатор в низкотемпературных топливных элементах, и полу­чить некоторое дополнительное количество водорода. Для этого можно использовать реакцию монооксида углерода с водяным паром

Продолж. примери

При сжигании монооксида углерода выделяется 282,99 МДж/кмоль тепловой знері тогда как при окислении полученного в реакции сдвига водорода - 241,8 МДж/к- Таким образом, реакция сдвига является экзотермической с тепловым эффе равным 282,99-241,8 = 41,19 МДж/кмоль СО.

Общее уравнение реакции

при этом, очевидно, итоговая реакция является эндотермической, а ее тепловой э составляет 90,29-41,19 = 49,00 МДж на 1 кмоль метанола На каждый киломоль метанола необходимо израсходовать 1 кмоль водяного и Рабочий цикл начинается с подачи в систему смеси метанола и воды в правиль пропорции. Затем смесь в системе испаряется и нагревается до рабочей темпера - реакции, значение которой лежит в диапазоне от 20и до 600 °С. Уравнение энерге ческого баланса может быть записано в виде

АНоЬщ = АНпт + АНСр + Д7/реак + АП,

где АЯИСП - количество теплоты, которое необходимо подвести к системе ДЛЯ TL чтобы испарить спиртоводную смесь. При условиях, принятых в рассматрива: примере,

Л"сп = мет + АЯИСП. вода = 37,9 106 + 44,1106 = 82,0- 10й Дж/(кмоль СН3ОН»:

дНс - количество теплоты, которое необходимо подвести к системе, чтобы повыс температуру газообразной смеси метанола и водяного пара до рабочего значения. п как удельная теплоемкость большинства веществ сильно изменяется в завист от температуры, а точное значение рабочей температуры в рассматриваемом прим не указано, будем использовать для оценочных расчетов характерные значения лоемкости: 37 кДж/(кг-К) для воды и 39 кДж/(кг-К) для метанола:

ДНСр = срметАТ + cpB0WAT = 37 103АТ + 39 Ю3АТ = 76 103АТ.

Если принять, что АТ = 250 К, т. е. температура, при которой протекает реа равна 298 + 250 = 548 К, или 275 °С, то теплота, необходимая для разогрева см составляет

АНс = 19 -106 ДжДкмоль СН3ОН).

Значение ДЯреа1Ш было рассчитано выше и составляет 49 МДж на 1 кмоль метанола. Наконец, значение тепловых потерь АНПСП может быть минимизировано с помош. хорошей теплоизоляции системы. Будем считать, что в рассматриваемом прим размер тепловых потерь пренебрежимо мал.

Общее количество теплоты равно Д#об1|(= 82 +19 + 49 = 150 МДж на 1 кмоль метан Такое количество теплоты может быть получено путем сжигания 150/242 = 0,62 кма" водорода. Таким образом, из 3 кмолей полученного водорода около 20 % необході отправить в печь, а примерно 80 % будет получено на выходе из системы. Система то ‘ воподготовки преобразует метанол, энергоемкость которого составляет 676 МДж/кч в водород энергоемкостью 575 МДж/кмоль.

Окончание примера

Если не расходовать теплоту на испарение и нагрев спиртоводной смеси и исключить все тепловые потери, то для работы системы понадобится только такое количество теплоты, которое необходимо для проведения реакции разложения, т. е. 49 МДж на 1 кмоль метанола. Для ее получения необходимо 0,2 кмоля водорода, а полезный выход водорода из системы будет равен 2,8 кмоль, или 676 МДж/кмоль. Другими словами, система то[ їливополіотовки будет иметь КПД, близкий к 100 %, как того и следует ожидать при этих условиях.

Температура газа на выходе из системы намного выше температуры смеси, поступающей на ее вход. Часть этой тепловой энергии можно использовать для подогрева исходных веществ, повышая таким образом общую эффективность системы получения водорода.

Фирма Idatech (штат Орегон, США) разработала серию систем топливоподго - товки, принцип работы аналогичен рассмотренному в приведенном выше примере. >ги системы моїуг перерабатывать различные виды топлива, такие как метанол, метан и др. Обратимся к схеме, представленной на рис. 8.3. Эквимолярная смесь і? танола и воды или аналогичное исходное сырье подается под давлением в рас­положенный в камере сгорания змеевиковый теплообменник, где происходит ее предварительный нагрев и испарение. Затем сырье поступает в зону реформинга, которой происходит конверсия метанола в водород и монооксид углерода. Далее * реакции паровой конверсии происходит превращение монооксида углерода в уг - т: кислый газ, в результате чего образуется дополнительное количество водорода. 6 полученном газе все еще содержится существенное количество примесей. Для выделения водорода из полученной газовой смеси часть газа пропускают через їладиевьій фильтр, который проницаем только для водорода. Небольшую долю морода, полученного в зоне реформинга, смешивают с остатками продуктов ре - "рмипга и направляют не на палладиевую мембрану, а в камеру сгорания, где ссь сжигают в атмосфере воздуха, накачиваемого в камеру сгорания с помощью нтилятора. Искровой воспламенитель (на рисунке не показан) осуществляет роз - 1г смеси. Теплота сгорания водорода, который подается в камеру сгорания вместе дочищенными продуктами реформинга, используется для проведения реакции версии. Внешний источник требуется только на этапе запуска системы. При іуске небольшой электрообогреватель используется для повышения температу - в зоне реформинга для того, чтобы началась реакция. Время запуска системы івляет примерно 3 мин.

Небольшое количество монооксида углерода и углекислого газа содержится водороде даже после его фильтрации через палладиевую мембрану. Прежде М водород покидает установку, он протекает через выходной трубопровод, где положены катализаторы, на которых остатки примесных газов преобразуются метан - газ, который не отравляет катализаторы, используемые в топливных ментах. Рассматриваемая установка позволяет получать водород высокой чис - , содержащий менее 1 промилле СО и менее 5 промилле С02.

Вещество

Химическая

сгорания,

МДж/кмоль

сгорания,

МДж/кмоль

кДж/кмоль

МДж/кмоль

МДж/кмоль

3°, кДж/ /(кмоль К)

Диоксид углерода

Монооксид углерода

Этанол (газ)

Этанол (жидкость)

Водород (атомарный)

(молекулярный)

Гидроксил

Метанол (газ)

Метанол (жидкость)

Кислород

(атомарный)

Кислород

(молекулярный)

Вода (газ)

Ноли («к iKoi її.) 11 О і

В некоторых установках для подготовки топлива мембрана имеет цилиндриче­скую форму, в других она выполнена в виде пластины. Последний вариант, усо­вершенствованный специалистами фирмы Idatech, позволяет изготавливать очень компактные фильтры. Такой фильтр состоит из набора элементов, соединенных системой труб таким образом, что одиночные мембраны системы включены парал­ельно. Сборка мембран имеет вход для подачи продуктов конверсии, выход для ’ывода очищенного водорода и коллектор для отфильтрованных примесей, некото­рого количества водорода, не прошедшего фильтрацию, и небольшого количества непрореагировавшего топлива.

Палладиевый

обменник очистки от СО процесса газы Выходной патрубок ^

реформинга для очищенного водорода

Рис. 8.3. Схема одной из систем тоьливоподготовки фирмы }

Понравилась статья? Поделиться с друзьями: