Почему нельзя делить на ноль? Можно ли делить ноль на число? Почему на ноль делить нельзя

Деление на ноль в математике - деление, при котором делитель равен нулю. Такое деление может быть формально записано ⁄ 0 , где - это делимое.

В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:

  • при ≠ 0 не существует числа, которое при умножении на 0 даёт, поэтому ни одно число не может быть принято за частное ⁄ 0 ;
  • при = 0 деление на ноль также не определено, поскольку любое число при умножении на 0 даёт 0 и может быть принято за частное 0 ⁄ 0 .

Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.

Логические ошибки

Поскольку при умножении любого числа на ноль в результате мы всегда получаем ноль, при делении обеих частей выражения × 0 = × 0, верного вне зависимости от значения и, на 0 получаем неверное в случае произвольно заданных переменных выражение = . Поскольку ноль может быть задан не явно, но в виде достаточно сложного математического выражения, к примеру в форме разности двух значений, сводимых друг к другу путём алгебраических преобразований, такое деление может быть достаточно неочевидной ошибкой. Незаметное внесение такого деления в процесс доказательства с целью показать идентичность заведомо разных величин, тем самым доказывая любое абсурдное утверждение, является одной из разновидностей математического софизма .

В информатике

В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:

  • Попытка целочисленного деления на ноль всегда является критической ошибкой, делающей невозможным дальнейшее исполнение программы. Она приводит либо к генерации исключения (которое программа может обработать сама, избежав тем самым аварийной остановки), либо к немедленной остановке программы с выдачей сообщения о неисправимой ошибке и, возможно, содержимого стека вызовов. В некоторых языках программирования, например, в Go, целочисленное деление на нулевую константу считается синтаксической ошибкой и приводит к аварийному прекращению компиляции программы.
  • В вещественной арифметике последствия могут быть различным в разных языках:
  • генерация исключения или остановка программы, как и при целочисленном делении;
  • получение в результате операции специального нечислового значения. Вычисления при этом не прерываются, а их результат впоследствии может быть интерпретирован самой программой или пользователем как осмысленное значение или как свидетельство некорректности вычислений. Широко используется принцип, согласно которому при делении вида ⁄ 0 , где ≠ 0 - число с плавающей запятой, результат оказывается равен положительной или отрицательной (в зависимости от знака делимого) бесконечности - или, а при = 0 в результате получается специальное значению NaN (сокр. от англ. not a number - «не число»). Такой подход принят в стандарте IEEE 754, который поддерживается многими современными языками программирования.

Случайное деление на ноль в компьютерной программе порой становится причиной дорогих или опасных сбоев в работе управляемого программой оборудования. К примеру, 21 сентября 1997 года в результате деления на ноль в компьютеризированной управляющей системе крейсера USS Yorktown (CG-48) Военно-морского флота США произошло отключение всего электронного оборудования в системе, в результате чего силовая установка корабля прекратила свою работу .

См. также

Примечания

Функция = 1 ⁄ . Когда стремится к нулю справа, стремится к бесконеч­ности; когда стремится к нулю слева, стремится к минус бесконечности

Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».

Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».

Всё согласуется с известным со школы правилом, что на ноль делить нельзя.

Разберёмся, почему.

Деление — это математическая операция, обратная умножению. Деление определяется через умножение.

Поделить число a (делимое, например 8) на число b (делитель, например число 2) — значит найти такое число x (частное), при умножении которого на делитель b получается делимое a (4 · 2 = 8), то есть a разделить на b значит решить уравнение x · b = a.

Уравнение a: b = x равносильно уравнению x · b = a.

Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.

8: 2 = 4 равносильно 4 · 2 = 8

18: 3 = 6 равносильно 6 · 3 = 18

20: 2 = 10 равносильно 10 · 2 = 20

Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.

Аналогично попробуем поделить на ноль.

Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.

Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).

Зачем в школе говорят, что на ноль делить нельзя?

Поэтому в определении операции деления a на b сразу подчёркивается, что b ≠ 0.

Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).

Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.

Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 - 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 - 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания.

Деление на ноль

Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?

В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён

Дельть на ноль нельзя. Математика 2 класса средней школы.

Если мне не изменяет память, то ноль можно представить как бесконечно малую величину, так что бесконечность будет. А школьное «ноль — ничего» — это просто упрощение, их таких в школьной математике ууууууу сколько) . Но без них никак, все в свое время.

Войдите, чтобы написать ответ

Деление на ноль

Частное от деления на ноль какого-либо числа, отличного от нуля, не существует.

Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.

Напишем, например,

какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:

\[ 2 · 0 = 0 \]

\[ 3 · 0 = 0 \]

\[ 7 · 0 = 0 \]

Что будет если поделить на 0?

д., а нужно получить в произведении 2,3,7.

Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на

\[ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000} \]

то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.

Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут

\[ 7: 0 = \infin \]

Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.

У математиков специфический юмор и некоторые вопросы, связанные с вычислениями, уже давно не воспринимаются серьезно. Не всегда понятно, пытаются тебе на полном серьезе объяснить, почему нельзя делить на ноль или это очередная шутка. А ведь сам вопрос не такой уж очевидный, если в элементарной математике до его решения можно дойти чисто логически, то вот в высшей вполне могут быть другие исходные условия.

Когда появился ноль?

Цифра ноль таит в себе множество загадок:

  • В Древнем Риме этого числа не знали, система отсчета начиналась с I.
  • За право называться прародителями ноля долгое время спорили арабы и индийцы.
  • Исследования культуры Майя показали, что эта древняя цивилизация вполне могла быть первой, в плане употребления ноля.
  • Ноль не обладает никаким числовым значением, даже минимальным.
  • Он буквально означает ничто, отсутствие предметов для счета.

В первобытном строе не было особой нужды для такой цифры, отсутствие чего-либо можно было объяснить при помощи слов. Но с зарождением цивилизаций повысились и потребности человека, в плане архитектуры и инженерии.

Для осуществления более сложных расчетов и выведения новых функций понадобилось число, которое обозначало бы полное отсутствие чего-либо .

Можно ли делить на ноль?

На этот счет существуют два диаметрально противоположных мнения :

В школе, еще в младших классах учат тому, что на ноль делить нельзя ни в коем случае. Объясняется это предельно просто:

  1. Представим, что у вас есть 20 долек мандарина.
  2. Поделив их на 5, вы раздадите пятерым друзьям по 4 дольки.
  3. Разделить на ноль не получится, ведь самого процесса деления между кем-то не будет.

Конечно же, это образное объяснение, во многом упрощенное и не совсем соответствующее действительности. Но оно предельно доступно поясняет бессмысленность деления чего-либо на ноль.

Ведь, по сути, таким образом можно обозначать факт отсутствия деления. А зачем усложнять математические вычисления и записывать еще и отсутствие деления?

Можно ли ноль делить на число?

С точки зрения прикладной математики, любое деление, в котором принимает участие ноль, имеет не так уж много смысла. Но школьные учебники однозначны в своем мнении:

  • Ноль можно делить.
  • Для деления следует использовать любое число.
  • Нельзя делить ноль на ноль.

Третий пункт может вызвать легкое недоумение, ведь всего несколькими абзацами выше указывалось, что такое деление вполне возможно. На самом деле, все зависит от дисциплины, в рамках которой вы проводите вычисления.

Школьникам в таком случае действительно лучше писать, что выражение невозможно определить , а, следовательно, оно и не имеет смысла. Но в некоторых ответвлениях алгебраической науки допускается запись такого выражения, с делением ноля на ноль. Особенно когда речь идет о вычислительных машинах и языках программирования.

Потребность делить ноль на число может возникнуть во время решения каких-либо равенств и поиска исходных значений. Но в таком случае, в ответе всегда будет ноль . Здесь, как и с умножением, на какое число вы бы не делили ноль, больше ноля в итоге не получите. Поэтому если в огромной формуле заметили это заветное число, постарайтесь быстро «прикинуть», а не сведутся ли все вычисления к очень простому решению.

Если бесконечность делить на ноль

О бесконечно больших и бесконечно малых значениях необходимо было упомянуть чуть раньше, ведь это тоже открывает некоторые лазейки для деления, в том числе и с использованием ноля. Вот правда и тут есть небольшая загвоздка, ведь бесконечно малое значение и полное отсутствие значения - понятия разные .

Но этой небольшой разницей в наших условиях можно пренебречь, в конечном счете, вычисления проходят с использованием абстрактных величин:

  • В числители должен быть знак бесконечности.
  • В знаменатели символическое изображение стремящегося к нулю значения.
  • В ответе выйдет бесконечность, отображающая бесконечно большую функцию.

Следует обратить внимание на то, что речь все же идет о символическом отображении бесконечно малой функции, а не об использовании ноля. С этим знаком ничего не поменялось, на него все так же нельзя делить, только в качестве очень и очень редких исключений.

В большинстве своем ноль используется для решения задач, которые находятся в чисто теоретической плоскости . Возможно, по прошествии десятилетий или даже столетий, всем современным вычислениям найдется практическое применение, и они обеспечат какой-то грандиозный прорыв в науке.

А пока что большинство гениев от математики о всемирном признании лишь мечтают. Исключение из этих правил - наш соотечественник, Перельман . Но его знают благодаря решению действительно эпохальной задачи с доказательством гипотезы Пуанкере и экстравагантному поведению.

Парадоксы и бессмысленность деления на ноль

Деление на ноль, в большинстве своем, не имеет никакого смысла:

  • Деление представляют как функцию, обратную умножению .
  • Мы можем умножить на ноль любое число и получить в ответе ноль.
  • По той же логике, можно было бы делить любое число на ноль.
  • В таких условиях несложно было бы прийти к выводу, что любое число, умноженное или деленное на ноль, равно любому другому числу, над которым провели эту операцию.
  • Откидываем математическое действие и получаем интереснейшее заключение - любое число равно любому числу.

Помимо создания таких вот казусов, деление на ноль не имеет практического значения , от слова вообще. Даже при возможности выполнения этого действия, не выйдет получить никакой новой информации.

С точки зрения элементарной математики, во время деления на ноль происходит разделение целого предмета ноль раз, то есть ни одного раза. Проще говоря - процесса деления не происходит , следовательно, и результата этого события быть не может.

Находясь в одном обществе с математиком, всегда можно задать пару банальных вопросов, по примеру, почему нельзя делить на ноль и получить интересный и доступный для понимания ответ. Или раздраженность, ведь у человека наверняка это спрашивают не в первый раз. И даже не в десятый. Так что берегите своих друзей-математиков, не заставляйте их повторять по сотне раз одно объяснение.

Видео: делим на ноль

В этом видео математик Анна Ломакова расскажет, что произойдет, если поделить какое-либо число на ноль и почему этого делать нельзя, с точки зрения математики:

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.

Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и «на ноль делить нельзя «. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»

Почему нельзя делить на ноль?

Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.

Возьмем число 10 и поделим его на 2 . Это подразумевает, что мы взяли 10 каких-либо предметов и расставили их по 2 равным группам, то есть 10: 2 = 5 (по 5 предметов в группе). Этот же пример можно записать и с помощью уравнения x * 2 = 10 х здесь будет равен 5 ).

Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0 .

Получится следующее: 10: 0 = х , следовательно х * 0 = 10 . Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0 . В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0 . Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.

Когда можно делить на ноль?

Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х , а значит х * 0 = 0 .

Предположим, что х=0 , тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0 , а значит и 0 * 0 = 0 .

Но что если х ≠ 0 ? Предположим, что х = 9 ? Тогда 9 * 0 = 0 и 0: 0 = 9 ? А если х=45 , то 0: 0 = 45 .

Мы действительно можем делить 0 на 0 . Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно .

Почему 0: 0 = NaN

Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число) .

Почему x: 0 = а x: -0 = —

Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0 иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞) .

Так можно ли делить на ноль?

Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя — это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Скачать:


Предварительный просмотр:

Учебник: «Математика» 3 класс М.И. Моро

Цели урока:

Задачи урока:

Для достижения цели урок был разработан с учётом деятельностного подхода.

Структура урока включала в себя:

  1. Орг. момент , целью которого было позитивно настроить детей на учебную деятельность.
  2. Мотивация позволила актуализировать знания, сформировать цели и задачи урока. Для этого были предложены задания на нахождение лишнего числа, классификацию примеров на группы, добавление недостающих чисел . В ходе решения этих заданий, дети столкнулись с проблемой : нашёлся пример, для решения которого не хватает имеющихся знаний. В связи с этим дети самостоятельно сформулировали цель и поставили перед собой учебные задачи урока.
  3. Поиск и открытие нового знания дал возможность детям предложить различные варианты решения задания. Основываясь на ранее изученный материал, они смогли найти верное решение и прийти к выводу , в котором сформулировали новое правило.
  4. Во время первичного закрепления ученики комментировали свои действия, работая по правилу , дополнительно были подобраны свои примеры на это правило.
  5. Для автоматизации действий и умения пользоваться правилам в нестандартных заданиях дети решали уравнения, выражения в несколько действий.
  6. Самостоятельная работа и проведенная взаимопроверка показали, что большинство детей тему усвоили.
  7. Во время рефлексии дети сделали вывод, что поставленная цель урока достигнута и оценили себя с помощью карточек.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Урок математики в 3 классе.

Тема урока: «Деление 0 на число. Невозможность деления на 0»

Цели урока: создать условия для формирования умения делить 0 на число.

Задачи урока:

  • раскрыть смысл деления 0 на число через связь умножения и деления;
  • развивать самостоятельность, внимание, мышление;
  • формировать навыки решения примеров на табличное умножение и деление.

Ход урока.

  1. Организационный этап.

Проверьте свою готовность к уроку, сядьте прямо.
Потрите свои ушки, чтобы кровь активнее поступала в мозг. Сегодня у вас будет много интересной работы, с которой, я уверена, вы справитесь на отлично.

  1. (слайд 1; 2; 3)

Веселый прозвенел звонок,

Мы начинаем наш урок.

Все ли правильно сидят,

Все внимательно глядят?

Каждый хочет получать

Только лишь оценку пять!

Откройте свои тетради, запишите сегодняшнее число. (слайд 4) Что вы можете сказать о числе 20? (Оно двузначное; оно чётное; состоит из разряда десятков и разряда единиц).

Сколько десятков и сколько единиц в нём? (2 десятка и 0 единиц.).

  1. Устный счёт.
  1. Игра «Найди лишнее число» (слайд 5)

Из каждого столбика выберите «лишнее число»

2. Найдите площади фигур: (слайд 6)

3. Арифметический диктант:

  1. Какое число надо умножить на 7, чтобы получить 42?
  2. Назовите число, которое меньше 24 на 6?
  3. Из какого числа надо вычесть 18, чтобы получить 3?
  4. Во сколько раз 4 десятка больше 5?
  5. Найдите произведение 9 и 3.
  6. Делимое 36, частное 6. Чему равен делитель?
  7. Увеличьте 8 в 6 раз.
  8. На какое число надо разделить 28, чтобы получить 7?

Запишите только ответы.

(Взаимопроверка: 6, 18, 21, 8, 27, 6, 48, 4.) – (слайд 7)

4.Индивидуальная работа (работа по карточкам, см. приложения)

5. Создание проблемной ситуации
Задания в парах:
- расставьте примеры в 2 группы:

Почему так распределили? (с ответом 4 и 5)

Решите примеры:
8·7-6+30:6=
28:(16:4)·6=
30-(20-10:2):5=
30-(20-10·2):5=

Что вы заметили? Есть ли здесь лишние примеры?
- Все ли примеры вы смогли решить?
- У кого возникли затруднения?
- Чем этот пример отличается от остальных?
- Если кто-то решил, то молодец. Но почему не все смогли справиться с этим примером?

6.Постановка учебной задачи.
Здесь есть пример с 0. А от 0 можно ожидать разные фокусы. Это необычное число.
Вспомните, что вы знаете про 0?
(а·0=0, 0·а=0, 0+а=а)·
Приведите примеры.
Посмотрите, какой он коварный: когда его прибавляют, он не изменяет число, а когда умножают, превращают его в 0.
Подходят ли эти правила к нашему примеру?(нет)
Как же он поведёт себя при делении?

  1. Сообщение темы и целей урока (слайд 8)

- Итак, какова наша цель? Решить этот пример верно.

цель

Таблица на доске.

Что для этого надо? Узнать правило деления 0 на число.

задача

Тема нашего урока: «Деление нуля на число, невозможность деления на нуль».

Мы рассмотрим приёмы деления нуля на число, закрепим знания таблицы умножения, умение решать составные задачи.

  1. Усвоение новых знаний и способов действий.

Как же найти верное решение?
С каким действием связано умножение? (с делением)
Приведите пример
2 · 3 = 6
6: 2 = 3

Можем ли мы теперь 0:5?
Это значит, надо найти число, при умножении которого на 5 получится 0.
х·5=0
Это число 0. Значит, 0:5=0.

Приведите свои примеры.

  1. На экране: 0:6 (слайд 9)

Подберите такое число, при умножении которого на 6 получился бы 0? (Это 0).

Значит, 0:6=0

Аналогично рассматривается случай деления 0:9.

Вывод: При делении нуля на любое другое число, получается нуль.

ПОМНИ, делить на нуль нельзя!

Почему нельзя делить на нуль? Обоснуйте свой ответ.

(При делении на 0, например, числа 6 или другого числа, кроме нуля нельзя найти такое число, умножив которое на нуль, получилось бы 6 или другое число).

2.Послушайте сказку о нуле. (слайды 10-16)

Далеко-далеко, за морями и горами, была страна Цифрия. Жили в ней очень честные числа. Только Нуль отличался ленью и нечестностью.

Однажды все узнали, что далеко за пустыней появилась королева Арифметика, зовущая к себе на службу жителей Цифрии. Служить королеве захотели все. Между Цифрией и королевством Арифметики пролегла пустыня, которую пересекли четыре реки: Сложение, Вычитание, Умножение и Деление. Как добраться до Арифметики? Числа решили обьедениться (ведь с товарищами легче преодолевать трудности) и попробовать перейти пустыню.

Рано утром, как только солнце коснулось земли своими лучами, двинулись числа в путь. Долго шли они под палящим солнцем и, наконец, добрались до реки Сложение. Числа бросились к реке, чтобы напиться, но река сказала: «Станьте по парам и сложитесь, тогда дам вам напиться». Всё исполнили приказание реки, исполнил желание и лентяй Нуль. Но число, с которым он сложился, осталось недовольно: ведь воды река давала столько, сколько единиц было в сумме, а сумма не отличалась от числа.

Солнце еще больше печет. Дошли до реки Вычитание. Она тоже потребовала за воду плату: стать парами и вычесть меньшее число из большего, у кого ответ получится меньше, тот получит больше воды. И снова число. Стоящее в паре с Нулём оказалось в проигрыше и было расстроено.

А у реки Деление никто из чисел не захотел становиться в пару с Нулём. С тех пор ни одно число не делится на нуль.

Правда, королева Арифметика примирила все числа с этим лентяем: она стала просто приписывать нуль рядом с числом, которое от этого увеличивалось в десять раз. И стали числа жить-поживать, да добра наживать.

Сегодня мы с вами открыли ещё один фокус «нуля». Что это за «фокус»? О нём надо помнить, чтобы не допускать ошибок в вычислениях.

  1. Первичная проверка понимания изученного. Работа по учебнику.

1.Прочитайте правило в учебнике и сравните с вашим.

А давайте попробуем любое число разделить на 0.
Например, 5:0. Сколько получится?
Нельзя подобрать такое число, при умножении которого на 0 получится 5.
Вывод: НА 0 ДЕЛИТЬ НЕЛЬЗЯ.

В каких ещё заданиях может понадобиться знание этого правила? (в решении примеров, уравнений)

  1. Выполнения №1 стр. 75 с комментированием «цепочкой».

Физкультминутка и зарядка для глаз (слайд 17-18)

Утром стрекоза проснулась,

Потянулась, улыбнулась.

Раз - росой она умылась,

Два - изящно покружилась

Три - нагнулась и присела,

На четыре – полетела.

У реки остановилась,

Над водою закружилась.

  1. Работа над пройденным материалом.

1)Выполнение №2 (устно)

2) Нахождение значений выражений №6 (1) стр. 85

3) Решение задачи №5 стр.85 (слайд 19)

Как вы думаете, часто ли в задачах используется число 0?
(Нет, не часто, т.к. 0 – это ничего, а в задачах должно какое-то количество чего-либо.)
Тогда будем решать задачи, где есть другие числа.
Составление таблицы на интерактивной доске.

Прочитайте условие задачи и подумайте, как удобнее выполнить краткую запись. (В таблице).

Какие графы должны быть в таблице?

Что такое 8кг? (Масса 1 ящика со сливами)

Что ещё известно в задаче? (Масса 1 ящика с грушами. Масса всех ящиков со сливами.)

Что сказано о количестве ящиков с грушами? (Их столько же). Или количество одинаковое.

Составьте программу решения и запишите решение самостоятельно.

Б) Проверка решения.

1) 48:8=6(ящ.)

2) 9∙6=54(кг)

Ответ:54 кг груш привезли на рынок.

4)Решение уравнений с устным объяснением.

№8 стр. 85

5)Найди закономерность (задание на слайде) (слайд 20)

6 )Самостоятельная работа. (слайд 21)

(Проверочная работа.с.42,43.)

  1. Итог урока
  • Что нового мы узнали на уроке?
  • Что получится при делении нуля на любое число?
  • Какое важное правило должны запомнить?
  1. Информация о домашнем задании (слайд 22)

№4, №6(2) стр. 85.

Рефлексия (см. приложение; слайды 23-24)

Над какой темой сегодня работали? О чём вы не знали в начале урока?
-Какую цель ставили перед собой?
-Достигли вы её? С каким правилом познакомились?
- Ребята! Вам понравился урок?

Посмотрите на "пушистиков". У них разные настроения. Раскрасьте "пушистика", у которого такое же настроение, как у вас. Покажите своих «пушистиков».(я доволен собой, у меня всё получилось; всё хорошо, но я мог работать лучше; урок обычный, ничего интересного; ничего не получилось) Молодцы! Спасибо за урок! До новых встреч!




Понравилась статья? Поделиться с друзьями: