Гальванические элементы. Виды и устройство. Работа и особенности

Гальванический элемент – это источник электрической энергии, принцип действия основан на химических реакциях. Большинство современных батареек и аккумуляторов подпадает под определение и относится к рассматриваемой категории. Физически гальванический элемент состоит из проводящих электродов, погруженных в одну или две жидкости (электролиты).

Общая информация

Гальванические элементы делятся на первичные и вторичные в соответствии со способностью вырабатывать электрический ток. Оба вида считаются источниками и служат для различных целей. Первые вырабатывают ток в ходе химической реакции, вторые функционируют исключительно после зарядки. Ниже обсудим обе разновидности. По количеству жидкостей различают две группы гальванических элементов:

Непостоянство источников питания с единственной жидкостью заметил Ом, открыв неприемлемость гальванического элемента Волластона для экспериментов по исследованию электричества. Динамика процесса такова, что в начальный момент времени ток велик и вначале растёт, потом за несколько часов падает до среднего значения. Современные аккумуляторы капризны.

История открытия химического электричества

Мало известен факт, что в 1752 году гальваническое электричество упоминалось Иоганном Георгом. Издание Исследование происхождения приятных и неприятных ощущений, выпущенное Берлинской академией наук, даже придавало явлению вполне правильное толкование. Опыт: серебряную и свинцовую пластины соединяли с одного конца, а противоположные с разных сторон прикладывались к языку. На рецепторах наблюдается вкус железного купороса. Читатели уже догадались, описанный способ проверки батареек часто использовали в СССР.

Объяснение явления: видимо, имеются некие частицы металла, раздражающие рецепторы языка. Частицы испускаются одной пластиной при соприкосновении. Причём один металл при этом растворяется. Собственно, налицо принцип действия гальванического элемента, где цинковая пластина постепенно исчезает, отдавая энергию химических связей электрическому току. Объяснение сделано за полвека до официального доклада Королевскому обществу Лондона Алессандро Вольта об открытии первого источника питания. Но, как происходит часто с открытиями, к примеру, электромагнитным взаимодействием, опыт остался незамечен широкой научной общественностью и не исследован должным образом.

Добавим, это оказалось связано с недавней отменой преследования за колдовство: немногие решались после печального опыта «ведьм» на изучение непонятных явлений. Иначе обстояло дело с Луиджи Гальвани, с 1775 года работающим на кафедре анатомии в Болонье. Его специализаций считались раздражители нервной системы, но светило оставил значимый след не в области физиологии. Ученик Беккарии активно занимался электричеством. Во второй половине 1780 года, как следует из воспоминаний учёного (1791, De Viribus Electricitatis in Motu Muscylary: Commentarii Bononiensi, том 7, стр. 363), в очередной раз производилось препарирование лягушки (опыты и потом длились долгие годы).

Примечательно, что необычное явление подмечено ассистентом, в точности, как с отклонением стрелки компаса проводом с электрическим током: открытие сделали лишь косвенно связанные с научными исследованиями люди. Наблюдение касалось подергиваний нижних конечностей лягушки. В ходе опыта ассистент задел внутренний бедренный нерв препарируемого животного, ножки дёрнулись. Рядом, на столе стоял электростатический генератор, на приборе проскочила искра. Луиджи Гальвани немедленно загорелся идеей повторить опыт. Что удалось. И опять на машине проскочила искра.

Образовалась параллель связи с электричеством, и Гальвани возжелал узнать, станет ли на лягушку действовать подобным образом гроза. Оказалось, что природные катаклизмы не оказывают заметного воздействия. Лягушки, прикреплённые медными крючками за спинной мозг к железной ограде, дёргались вне зависимости от погодных условий. Опыты не удавалось реализовать со 100-процентной повторяемостью, атмосфера воздействия не оказывала. В итоге Гальвани нашёл сонм пар, составленных из разных металлов, которые при соприкосновении между собой и нервом вызывали подёргивание лапок у лягушки. Сегодня явление объясняют различной степенью электроотрицательности материалов. К примеру, известно, что нельзя алюминиевые пластины клепать медью, металлы составляют гальваническую пару с ярко выраженными свойствами.

Гальвани справедливо заметил, что образуется замкнутая электрическая цепь, предположил, что лягушка содержит животное электричество, разряжаемое подобно лейденской банке. Алессандро Вольта не принял объяснения. Внимательно изучив описание экспериментов, Вольта выдвинул объяснение, что ток возникает при объединении двух металлов, непосредственно или через электролит тела биологического существа. Причина возникновения тока кроется в материалах, а лягушка служит простым индикатором явления. Цитата Вольты из письма, адресованного редактору научного журнала:

Проводники первого рода (твёрдые тела) и второго рода (жидкости) при соприкосновении в некоторой комбинации рождают импульс электричества, сегодня нельзя объяснить причины возникновения явления. Ток течёт по замкнутому контуру и исчезает, если целостность цепи нарушена.

Вольтов столб

Лепту в череду открытий внёс Джованни Фаброни, сообщивший, что при размещении двух пластинок гальванической пары в воду, одна начинает разрушаться. Следовательно, явление имеет отношение к химическим процессам. А Вольта тем временем изобрёл первый источник питания, долгое время служивший для исследования электричества. Учёный постоянно искал способы усиления действия гальванических пар, но не находил. В ходе опытов создана конструкция вольтова столба:

  1. Попарно брались цинковые и медные кружки в плотном соприкосновении друг с другом.
  2. Полученные пары разделялись мокрыми кружками картона и ставились друг над другом.

Легко догадаться, получилось последовательное соединение источников тока, которые суммируясь, усиливали эффект (разность потенциалов). Новый прибор вызывал при прикосновении ощутимый для руки человека удар. Подобно опытам Мушенбрука с лейденской банкой. Однако для повторения эффекта требовалось время. Стало очевидно, что источник энергии имеет химическое происхождение и постепенно возобновляется. Но привыкнуть к понятию нового электричества оказалось непросто. Вольтов столб вёл себя подобно заряженной лейденской банке, но…

Вольта организует дополнительный эксперимент. Снабжает каждый из кружков изолирующей ручкой, приводит в соприкосновение на некоторое время, потом размыкает и проводит исследование электроскопом. К тому времени уже стал известен закон Кулона, выясняется, что цинк зарядился положительно, а медь – отрицательно. Первый материал отдал электроны второму. По указанной причине цинковая пластина вольтова столба постепенно разрушается. Для изучение работы назначили комиссию, которой представили доводы Алессандро. Уже тогда путём умозаключений исследователь установил, что напряжение отдельных пар складывается.

Вольта объяснил, что без мокрых кружков, прокладываемых между металлами, конструкция ведёт себя как две пластинки: медная и цинковая. Усиления не происходит. Вольта нашёл первый ряд электроотрицательности: цинк, свинец, олово, железо, медь, серебро. И если исключить промежуточные металлы между крайними, «движущая сила» не изменяется. Вольта установил, что электричество существует, пока соприкасаются пластины: сила не видна, но легко чувствуется, следовательно, она истинна. Учёный 20 марта 1800 года пишет президенту Королевского общества Лондона сэру Джозефу Бэнксу, к которому обращался впервые и Майкл Фарадей.

Английские исследователи быстро обнаружили: если на верхнюю пластину (медь) капнуть воды, в указанной точке в районе контакта выделяется газ. Они проделали опыт с обоих сторон: провода подходящей цепи заключили в колбы с водой. Газ исследовали. Оказалось, что газ горючий, выделяется лишь с единственной стороны. С противоположной заметно окислилась проволока. Установлено, что первое является водородом, а второе явление происходит вследствие избытка кислорода. Установлено (2 мая 1800 года), что наблюдаемый процесс — разложение воды под действием электрического тока.

Уильям Крукшенк немедленно показал, что аналогичное допустимо проделать с растворами солей металлов, а Волластон окончательно доказал идентичность вольтова столба статическому электричеству. Как выразился учёный: действие слабее, но обладает большей продолжительностью. Мартин Ван Марум и Христиан Генрих Пфафф зарядили от элемента лейденскую банку. А профессор Хампфри Дэви установил, что чистая вода не может служить в этом случае электролитом. Напротив, чем сильнее жидкость способна окислять цинк, тем лучше действует вольтов столб, что вполне согласовывалось с наблюдениями Фаброни.

Кислота намного улучшает работоспособность, ускоряя процесс выработки электричества. В конце концов Дэви создал стройную теорию вольтова столба. Он пояснил, что металлы изначально обладают неким зарядом, при замыкании контактов вызывающим действие элемента. Если электролит способен окислять поверхность донора электронов, слой истощённых атомов постепенно удаляется, открывая новые слои, способные давать электричество.

В 1803 году Риттер собрал столб из чередующихся кружков серебра и мокрого сукна, прообраз первого аккумулятора. Риттер зарядил его от вольтова столба и наблюдал процесс разрядки. Правильное толкование явлению дал Алессандро Вольта. И лишь в 1825 году Огюст де ла Рив доказал, что перенос электричества в растворе осуществляется ионами вещества, наблюдая образование оксида цинка в камере с чистой водой, отделённой от соседней мембраной. Заявление помогло Берцелиусу создать физическую модель, в которой атому электролита представлялись составленными из двух противоположно заряженных полюсов (ионов), способных диссоциировать. В результате получилась стройная картина переноса электричества на расстояние.

Гальванические элементы. Гальванические элементы являются первичными химическими источниками тока (ХИТ), в которых используются необратимые процессы преобразования химической энергии в электрическую. Они широко применяются в качестве источников питания постоянным током малогабаритной и переносной радиоаппаратуры.

При параллельном соединении элементов емкость батареи равна сумме емкостей элементов, входящих в нее, а при последовательном соединении – наименьшей емкости элемента, входящего в нее.

Емкость элемент а – количество электричества, отдаваемое элементом при разряде и определяемое в ампер-часах.

Широко применяются марганцово-цинковые элементы и ртутно-цинковые.

Аккумуляторы. Аккумуляторы, как и гальванические элементы, относятся к устройствам непосредственного преобразования химической энергии в электрическую. В отличие от гальванических элементов аккумуляторы способны восстанавливать свою работоспособность по отдаче электрической энергии приемникам путем их заряда от постороннего источника электрической энергии. Поэтому аккумулятором называют прибор многократного действия, способный накапливать и сохранять в течение некоторого времени электрическую энергию. Он является вторичным химическим источником тока. Запас химической энергии в нем создается во время заряда от постороннего источника. Во время заряда аккумулятора материалы, входящие в его состав, преобразуются в такое состояние, при котором они могут вступать между собой в химическую реакцию с выделением электрической энергии. Таким образом, аккумуляторы накапливают электрическую энергию при их заряде и расходуют ее при разряде.

Аккумуляторы характеризуются следующими основными параметрами.

ЭДС аккумулятора Е, которая зависит от состава активной массы пластин, от температуры и концентрации (плотности) электролита. Измерение ЭДС аккумулятора производится вольтметром с большим входным сопротивлением (больше 1000 Ом/В). Поскольку ЭДС заряженного и частично разряженного аккумулятора может быть одинаковой, то по значению ЭДС судить о степени разряженности аккумулятора нельзя.

Напряжение аккумулятора – разность потенциалов между положительной и отрицательной пластинами при включенной нагрузке. Напряжение при заряде U З = Е + I З r 0 , а при разряде U Р = Е - I Р r 0 ,

где I З, I Р – токи заряда, разряда в А; r 0 – внутреннее сопротивление аккумулятора, Ом (оно определяется конструкцией электродов, плотностью электролита, степенью разряженности аккумулятора, окружающей температурой).

Номинальная емкость аккумулятора – это количество электричества в Ач, которое он может отдать при десятичасовом режиме разряда, неизменном токе и температуре электролита +25 о С. Величина тока 10-часового режима разряда равна частному от деления номинальной емкости (С 10) на 10.

Аккумуляторы способны саморазряжаться , т.е. уменьшать свою емкость при разомкнутой цепи нагрузки. Интенсивность саморазряда зависит от температуры окружающей среды, состава электролита и материала электродов.

В зависимости от состава электролита аккумуляторы бывают кислотными и щелочными.

Кислотные аккумуляторы . В корпусе (из эбонита или пластмассы) помещаются положительные и отрицательные электроды, смонтированные в блоки. Активной массой положительной пластины является двуокись свинца (РвО 2), а отрицательной – свинец (Рв). Электролитом является водный раствор серной кислоты. Номинальное напряжение кислотного аккумулятора равно 2,0 В. При заряде напряжение доводится до 2,6 – 2,8 В. В начале разряда напряжение быстро снижается до 2,2 В. Следует помнить, что разряжать кислотный аккумулятор ниже 1,8 В нельзя, так как в этом случае на отрицательных пластинах образуется трудно растворимый белый налет (происходит сульфатация аккумулятора). Для предохранения аккумулятора от сульфатации его рекомендуется заряжать каждые 30 дней, независимо от оставшейся емкости.

Недостатки кислотных аккумуляторов: сложность ухода и небольшая прочность, повышенная чувствительность к коротким замыканиям и перегрузкам, нельзя их помещать внутри РЭУ (испарения портят детали).

Промышленностью выпускаются кислотные аккумуляторы типа СК с номинальной емкостью от 36 до 5328 Ач, например СК-148 (если это число 148 умножить на 36, то получится номинальная емкость 5328 Ач).

Щелочные аккумуляторы . Они просты в обслуживании, их можно быстрее зарядить (4 – 7 ч вместо 10 – 12 ч для кислотных), можно располагать внутри РЭУ без вреда для них. Наиболее часто применяются щелочные аккумуляторы никель-кадмиевые (НК), никель-железные (НЖ) и серебряно-цинковые (СЦ). В качестве электролита применяют водный раствор едкого калия.

У щелочных аккумуляторов ЭДС равна 1,5 В (в разряженном аккумуляторе Е = 1,3 В). Средняя плотность электролита у щелочных аккумуляторов в процессе заряда и разряда примерно постоянная. Поэтому их состояние характеризуется в основном значением ЭДС.

Щелочные аккумуляторы выпускаются заводом без электролита. При приготовлении электролита необходимо соблюдать особую осторожность, так как при смешении едкого калия с водой выделяется большое количество тепла. Твердую щелочь разбивают на небольшие куски, накрыв при этом ее материалом, чтобы осколки не попали в глаза и на кожу. Щелочь опускают в воду кусочками, непрерывно помешивая раствор стеклянной или стальной палочкой.

Сегодня гальванические элементы являются одними из наиболее распространенных химических Несмотря на их недостатки, они активно используются в электротехнике и постоянно совершенствуются.

Принцип действия

Наиболее простой пример работы гальванического элемента выглядит так. В стеклянную банку с водным раствором серной кислоты погружают две пластины: одна - медная, вторая - цинковая. Они становятся положительным и отрицательным полюсами элемента. Если эти полюса соединить проводником, получится простейшая Внутри элемента ток будет течь от цинковой пластины, имеющей отрицательный заряд, к медной, заряженной положительно. Во внешней цепи движение заряженных частиц будет происходить в обратном направлении.

Под действием тока ионы водорода и кислотного остатка серной кислоты будут двигаться в разных направлениях. Водород будет отдавать свои заряды медной пластине, а кислотный остаток - цинковой. Так на зажимах элемента будет поддерживаться напряжение. В то же время на поверхности медной пластины будут оседать пузырьки водорода, который будет ослаблять действие гальванического элемента. Водород создает вместе с металлом пластины дополнительное напряжение, которое называется электродвижущей силой поляризации. Направление заряда этой ЭДС противоположно направлению заряда ЭДС гальванического элемента. Сами же пузырьки создают дополнительное сопротивление в элементе.

Рассмотренный нами элемент - это классический пример. В реальности подобные гальванические элементы просто не используются из-за большой поляризации. Чтобы она не происходила, при изготовлении элементов в их состав вводят специальное вещество, поглощающее атомы водорода, которое называется деполяризатором. Как правило, это препараты, содержащие кислород или хлор.

Преимущества и недостатки современных гальванических элементов

Современные гальванические элементы изготавливаются из разных материалов. Наиболее распространенный и знакомый нам тип - это угольно-цинковые элементы, применяемые в пальчиковых батарейках. К их плюсам можно отнести относительную дешевизну, к минусам - небольшой срок хранения и невысокую мощность.

Более удобный вариант - это щелочные гальванические элементы. Их еще называют марганцево-цинковыми. Здесь электролитом служит не сухое вещество типа угля, а щелочной раствор. Разряжаясь, такие элементы практически не выделяют газ, благодаря чему их можно изготавливать герметичными. Срок хранения таких элементов выше, чем угольно-цинковых.

Ртутные элементы похожи по своей конструкции на щелочные. Здесь применяют оксид ртути. Такие источники тока используют, например, для медицинской аппаратуры. Их преимущества - устойчивость к высоким температурам (до +50, а в некоторых моделях до +70 ˚С), стабильное напряжение, высокая механическая прочность. Недостаток - токсичные свойства ртути, из-за которых с отработавшими свой срок элементами нужно обращаться очень осторожно и отправлять на переработку.

В некоторых элементах применяют оксид серебра для изготовления катодов, но из-за дороговизны металла их использование экономически невыгодно. Более распространены элементы с литиевыми анодами. Они тоже отличаются высокой стоимостью, но имеют наибольшее напряжение среди всех рассмотренных типов гальванических элементов.

Еще один тип гальванических элементов - это концентрационные гальванические элементы. В них процесс движения частиц может протекать с переносом и без переноса ионов. Первый тип - это элемент, в котором два одинаковых электрода погружаются в разной концентрации, разделенные полупроницаемой перегородкой. В таких элементах ЭДС возникает благодаря тому, что ионы переносятся в раствор с меньшей концентрацией. В элементах второго типа электроды сделаны из разных металлов, а концентрация выравнивается за счет химических процессов, которые происходят на каждом из электродов. у этих элементов выше, чем у элементов первого типа.

Если отсутствует электрическая сеть, то для питания электроприборов применяют гальванические элементы и аккумуляторы, называемые иначе химическими источниками тока. Рассмотрим принцип их работы на примере первого простейшего элемента – элемента Вольта (рис. 1). Он состоит из медной (Сu) и цинковой (Zn) пластинок, опущенных в раствор серной кислоты (H2SO4). Вследствие химической реакции, происходящей между цинком и серной кислотой, на цинке образуется излишек электронов. Цинк заряжается отрицательно и является отрицательным полюсом. Раствор и медная пластинка, в него погруженная, заряжаются положительно. В результате возбуждается ЭДС, равная примерно одному вольту, которая сохраняется все время, пока цепь не замкнута.
Если замкнуть цепь, пойдет ток и внутри элемента усиленно начнет выделяться водород, покрывающий поверхность пластинок слоем пузырьков. Этот слой уменьшает напряжение на полюсах элемента. Такое явление носит название поляризации. Чем больше ток, тем сильнее поляризация и тем быстрее уменьшается напряжение элемента.

Рис.1. Простейший гальванический элемент Вольта.
Для устранения поляризации в элемент вводят вещества, способные поглощать водород и называемые деполяризаторами. Чтобы напряжение на полюсах оставалось постоянным, деполяризатор должен быстро поглощать водород, образующийся при работе элемента. Поглощая водород, деполяризатор постепенно приходит в негодность. Но обычно раньше этого портится электролит и под действием электролита разъедается цинк. Вообще электрическая энергия получается в элементе за счёт расхода цинка, электролита и деполяризатора; поэтому каждый элемент обладает определенным запасом энергии и может работать лишь ограниченное время.
Работа гальванических элементов объясняется с помощью теории электролитической диссоциации, согласно которой молекулы вещества, растворенного в воде распадаются (диссоциируют) на, ионы. Такое явление характерно для всех электролитов, представляющих собой растворы кислот, щелочей и солей. В элементе Вольта молекула серной кислоты (H2SO4) в водном растворе распадаются на отрицательный ион кислотного остатка (SO4) и положительный ион водорода (H2), что показано на рис. 2.
Химическая реакция между цинком и серной кислотой состоит в том, что положительные ионы цинка переходят в раствор, притягиваясь к отрицательным ионам электролита. При этом цинковый электрод сам заряжается отрицательно. Между ним и электролитом возникает разность потенциалов, а следовательно, и электрическое поле, которое препятствует дальнейшему переходу положительных ионов цинка в раствор. Поэтому создается некоторое равновесие с определенной разностью потенциалов между цинком и раствором. Для других металлов и растворов значение разности потенциалов будет иное.
Чтобы использовать возникшую разность потенциалов, в электролит помещают второй электрод, выполненный из другого металла. Если второй электрод – цинковый, то между ним и растворов получится такая же разность потенциалов, как у первого электрода но она будет действовать навстречу, и результирующая разность потенциалов между электродами будет равна нулю. У элементов отрицательный электрод, как правило, цинковый, а положительный электрод обычно медный или угольный.
Если соединить электроды элемента проводником, т. е. создать замкнутую цепь, то под действием разности потенциалов по внешней цепи от цинка будут двигаться электроны. Так как они уходят с цинкового электрода, то его отрицательный потенциал начинает уменьшаться и электрическое поле между ним и раствором ослабевает. Но тогда новые положительные ионы цинка переходят в раствор. Тем самым поддерживается определенный отрицательный потенциал цинкового электрода.

Рис.2. Ионы в электролите элемента Вольта.
При работе элемента непрерывно происходит растворение цинка в электролите, который постепенно превращается в раствор сернокислого цинка (ZnSO4). Положительные ионы цинка, переходящие все время в электролит, притягивают к себе отрицательные ионы кислотного остатка. Эти ионы в электролите данжутся в направлении от медной пластинки к цинковой. Зато положительные ионы водорода отталкиваются положительными ионами цинка и движутся в обратном направлении, то есть от цинка к меди. Таким об разом, если во внешней цепи ток представляет собой движение электронов (как и всегда в металлических проводниках), то в электролите ток является перемещением положительных и отрицательных ионов в противоположных направлениях. Ионы водорода подходят к медной пластинке и отнимают от нее электроны, превращаясь в нейтральные атомы. Вследствие этого на медной пластинке поддерживается определенный положительный потенциал, несмотря на то, что к ней из внешней цепи прибывают электроны. Однако медная пластинка постепенно покрывается слоем водорода. Между этим слоем и электролитом возникает разность потенциалов, действующая навстречу основной разности потенциалов, имеющейся между электродами. Возникновение такой противоэлетродвижущей силы и называется поляризацией элемента. Вследствие поляризации результирующая разность потенциалов уменьшается и действие элемента ухудшается.
Гальванические элементы характеризуются разными параметрами и прежде всего электродвижущей силой, внутренним сопротивлением, максимальным допустимым разрядным током и емкостью.
Электродвижущая сила обусловливается типом элемента, то есть материалом его электродов, веществом электролита и деполяризатора. Она совершенно не зависит от размеров элемента (размеров его электродов), количества электролита и количества деполяризатора.
Внутреннее сопротивление элемента зависит не только от его типа, но и от его размеров, а также от того, как долго работал элемент. Чем больше размеры элемента, тем меньше его внутреннее сопротивление. По мере работы элемента внутреннее сопротивление растет. Оно особенно резко возрастает у истощившихся элементов. Внутреннее сопротивление у элементов в начале их работы обычно бывает от единиц ом до десятых долей ома. Когда элемент присоединен к замкнутой цепи, напряжение на его зажимах всегда несколько меньше ЭДС и снижается при увеличении тока, так как возрастает потеря части ЭДС на внутреннем сопротивлении элемента. Иногда для элементов указывают напряжение при максимальном разрядном токе в начале работы элемента (начальное напряжение).
Каждый элемент можно разряжать током до определённого значения. Чрезмерно большой ток вызовет ускоренную поляризацию и напряжение быстро станет недопустимо низким. Подобное же явление, но в ещё большей степени происходит при коротком замыкании элемента. У большинства элементов максимальный допустимый разрядный ток составляет доли ампера. Чем больше размеры элемента, тем больше этот ток. Превышение тока приводит и быстрому истощению элемента.
Емкостью элемента называют количество электричества, которое он способен отдать при разряде током не свыше максимального допустимого. Обычно емкость элементов измеряют в ампер-часах (а-ч), то есть произведением разрядного тока в амперах и числа часов работы элемента. Элемент считают разряженным, если его напряжение уменьшилось примерно на 50 % по сравнению с первоначальным значением.
Время работы элемента можно определить, разделив емкость в ампер-часах на разрядный ток в амперах. При этом ток не должен превышать максимального допустимого значения.
Емкость элемента зависит от количества цинка, электролита и деполяризатора. Чем больше размеры элемента, тем больше количество входящих в его состав веществ и тем больше емкость. Кроме того, емкость зависит от разрядного тока, а также от перерывов во время разряда и их длительности. Нормальная емкость элемента соответствует максимальному допустимому разрядному току при непрерывном разряде. Если ток меньше максимального и если разряд происходит с перерывами то емкость увеличивается, а при токе свыше максимального ёмкость снижается, так как часть деполяризатора не участвует в реакциях. Емкость также уменьшается с понижением температуры. Поэтому расчет времени работы элемента по его номинальной емкости и разрядному току является приближенным.
2. МАРГАНЦОВО – ЦИНКОВЫЕ
И ОКСИДНО – РТУТНЫЕ ЭЛЕМЕНТЫ.
Широкое распространение получили марганцово – цинковые (МЦ) сухие элементы с деполяризатором из диоксида марганца.
Сухой элемент стаканчикового типа (рис. 3) имеет цинковый сосуд прямоугольной или цилиндрической формы, являющийся отрицательным электродом. Внутри него помещён положительный электрод в виде угольной
палочки или пластинки, которая находится в мешке, наполненном смесью диоксида марганца с порошком угля или графита. Уголь или графит добавляют для уменьшения сопротивления. Угольный стержень и мешок с деполяризующей массой называют агломератом. В качестве электролита используется паста, составленная из нашатыря (NH4Cl), крахмала и некоторых других веществ. У стаканчиковых элементов центральный вывод является положительным полюсом.
Рабочее напряжение сухого элемента несколько ниже, чем его ЭДС, равная 1,5 В, и составляет примерно 1,3 или 1,4 В. При длительном разряде напряжение по степенно уменьшается, так как деполяризатор не успевает поглощать весь выделяемый водород, и к концу раз ряда оно достигает 0,7 В.


Рис.3. Устройство сухого элемента.
Другая конструкция сухого элемента, так называемого галетного типа, показана на рис. 4. В нем положительным электродом является деполяризующая масса (угольного электрода нет). Галетные элементы имеют значительно лучшие характеристики, нежели стаканчиковые.


Рис. 4. Устройство сухого галетного элемента.
1 – деполяризатор – положительный электрод; 2 – цинк – отрицательный электрод; 3 – бумага;
4 – картон, пропитанный электролитом; 5 – полихлорвиниловая плёнка.
В каждом элементе, имеющем электролит, даже при разомкнутой внешней цепи происходит так называемый саморазряд, в результате которого разъедается цинковый электрод, а также истощаются электролит и деполяризатор. Поэтому сухой элемент при хранении постепенно проходит в негодность и электролит у него высыхает.
Когда сухие элементы полностью разрядятся, их агломераты ещё работоспособны и могут быть использованы для устройства самодельных наливных элементов. Такие элементы имеют агломерат и электрод из листового цинка в растворе нашатыря, находящемся в стеклянном или керамическом или пластмассовом стаканчике. При отсутствии нашатыря можно с несколько худшими результатами применить раствор обычной поваренной соли с небольшой добавкой сахара. Помимо сухих элементов типа МЦ, широко применяются элементы с марганцово – воздушной деполяризацией (МВЦ). Они устроены аналогично элементам МЦ, но у них положительный электрод сделан так, что к диоксиду марганца по особым каналам поступает наружный атмосферный воздух. Кислород воздуха возмещает потерю кислорода диоксидом марганца при деполяризации. Поэтому деполяризация может происходить значительно дольше и емкость элемента увеличивается.
Физико-химические процессы в элементах с диоксидом марганца происходят следующим образом. Нашатырь, то есть хлористый аммоний (NH4Cl), в водном растворе образует положительные ионы аммония (NH4) и отрицательные ионы хлора (Cl). Положительные ионы цинка переходят в раствор и цинк приобретает отрицательный потенциал. При замыкании цепи, когда во внешней цепи электроны движутся в направлении от цинка к углю всё время происходит растворение цинка. Его ионы переходят в электролит, за счёт чего поддерживается отрицательный потенциал цинка. Ионы цинка соединяются с ионами хлора, образуя раствор хлористого цинка (ZnCl2). В то же время ионы NH4 движутся к угольному электроду, отнимают от него электроны и распадаются на аммиак (NH3) и водород. Это происходит по уравнению
2NH4 = 2NH3 + H2.
Выделяющийся водород вступает в соединение с деполяризатором, то есть диоксидом марганца, образуя оксид марганца и воду:
H2 + MnО2 = MnО2 + Н2О.
В последние годы выпускаются еще сухие герметичные МЦ-элементы со щелочным электролитом (КОН). Они бывают цилиндрические, дисковые и галетные, ёмкостъ у них в три – пять раз больше, чем у элементов с электролитом из нашатыря. Кроме того, они допускают несколько циклов подзаряда током с отдачей 10% емкости. У таких элементов центральный электрод цинковый и является минусом, то есть полярность выводов противоположна полярности выводов обычных МЦ-элементов. Элементы со щелочным электролитом применяются для длительной работы, например, в электронных часах. В обозначениях таких элементов впереди ставится буква А.
У всех элементов начальное напряжение составляет примерно 1,3 – 1,5 В, а конечное напряжение равно 0,7 – 1 В. Хранение сухих элементов или батарей в бездействующем состоянии перед их использованием не должно продолжаться более срока, указанного на них; в противном случае сохранение работоспособности не гарантируется. Однако при хранении в течение указанного срока происходит некоторое снижение емкости, но не больше, чем на одну треть.
В последнее время выпускаются ещё малогабаритные оксидно – ртутные (ртутно – цинковые) герметичные элементы, имеющие более высокие качества, нежели элементы типа МЦ. Устройство оксидно – ртутных элементов показано на рис. 5. Элемент имеет стальной корпус состоящий из двух половин, отделенных друг от друга герметизирующей изоляционной прокладкой из резины.
В одну половину корпуса впрессована активная масса из оксида ртути (HgO) с графитом, являющаяся положительным электродом. Отрицательным электродом служит цинковый порошок, впрессованный в другую половину корпуса. Щелочной электролит (КОН) пропитывает пористую прокладку, разделяющую электроды. Эти элементы выпускаются разных размеров и разной емкости (от десятых долей ампер-часа до нескольких ампер-
часов). ЭДС у них составляет примерно 1,35 В. Срок хранения этих элементов 2,5 года. Саморазряд не превышает 1 % в год. По сравнению с МЦ-элементами ртут-


Рис. 5. Устройство герметичного оксиднво-ртутного элемента;
1 – стальной корпус с положительным электродом; 2 – пористая прокладка; 3 – резиновая уплотняющая прокладка; 4 – крышка корпуса с отрицательным электродом.
но – цинковые элементы имеют большую емкость, меньшее внутреннее сопротивление, но более высокую стоимость. Они широко применяются в электронных часах, кардиостимуляторах, фотоэкспонометрах, измерительных приборах. У самых малогабаритных элементов размеры составляют всего лишь несколько миллиметров, а масса – десятые доли грамма.
Важной особенностью оксидно-ртутных элементов является стабильность напряжения при разряде. Только в самом конце разряда напряжение резко падает до нуля.
3. СОЕДИНЕНИЕ ЭЛЕМЕНТОВ В БАТАРЕИ.
Выше говорилось, что ЭДС обычного химического элемента приблизительно равна 1,5 В. Для увеличения ЭДС применяют батарею с последовательным соединением элементов. В этом случае “+” одного элемента соединяют с “–” другого и т. д. “Минус” первого и “плюс” последнего являются полюсами всей батареи (рис. 6.).
При последовательном соединении элементов ЭДС возрастает во столько раз, сколько соединено элементов.


Рис.6. Последовательное и параллельное соединение элементов в батарею.
Реже встречается параллельное соединение элементов, при котором положительные полюсы всех элементов соединяются вместе, образуя положительный полюс батареи, а отрицательный полюс батареи получается путем соединения отрицательных полюсов элементов (рис. 6). При параллельном соединении элементов ЭДС батареи не увеличивается, но возрастают емкость и максимальный разрядный ток. Поэтому параллельное соединение применяют, когда нужно получить больший разрядный ток и большую емкость, чем у одного элемента.
Значительно чаще прибегают к смешанному соединению, при котором увеличиваются и ЭДС, и емкость, и максимальный разрядный ток. В этом случае обычно соединяют параллельно несколько групп элементов, а в каждой группе соединяют последовательно столько элементов сколько нужно для получения необходимой ЭДС.


Рис. 7. Смешанное соединение элементов в батарею.
Число параллельных групп определяется необходимой величиной максимального разрядного тока (рис. 7). Вообще желательно составлять батареи из последовательно соединённых элементов с достаточным разрядным током. И только в случае, когда необходимо получить больший ток или увеличенную емкость, прибегают к смешанному соединению. Включение дополнительных элементов по принципу смешанного соединения применяется также для повышения напряжения, если элементы сильно разрядились.
Во время бездействия батареи параллельные группы элементов надо отсоединять друг от друга, так как за счет даже незначительной разницы в ЭДС одна группа может разряжаться на другую.

Гальванический элемент — это химический источник электрического тока, в котором происходит непосредственное преобразование химической энергии в электрическую. Поэтому он является . Внешний вид наиболее распространенных элементов питания приведен на рисунке 1.


Рисунок 1. Внешний вид пальчиковых гальванических элементов

Существуют солевые (сухие), щелочные и литиевые элементы. Гальванические элементы часто называют батарейками, однако это название неверно, т.к. батареей является соединение нескольких одинаковых устройств. Например, при последовательном соединении трех гальванических элементов образуется широко используемая 4,5 вольтовая батарейка.

Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. Напряжение зависит от использованных металлов. Некоторые из этих химических источников тока приведены в таблице 1.

Тип источников тока Катод Электролит Анод Напряжение,
В
Марганцево-цинковый MnO 2 KOH Zn 1,56
Марганцево-оловянный MnO 2 KOH Sn 1,65
Марганцево-магниевый MnO 2 MgBr 2 Mg 2,00
Свинцово-цинковый PbO 2 H 2 SO 4 Zn 2,55
Свинцово-кадмиевый PbO 2 H 2 SO 4 Cd 2,42
Свинцово-хлорный PbO 2 HClO 4 Pb 1,92
Ртутно-цинковый HgO KOH Zn 1,36
Ртутно-кадмиевый HgO 2 KOH Cd 1,92
Окисно-ртутно-оловянный HgO 2 KOH Sn 1,30
Хром-цинковый K 2 Cr 2 O 7 H 2 SO 4 Zn 1,8-1,9

В продаже в основном представлены Марганцево-цинковые элементы, которые называют солевыми. Производители батареек обычно не указывают их химический состав. Это самые дешевые гальванические элементы, которые можно применять только в устройствах с низким потреблением, таких как часы, электронные термометры или пульты дистанционного управления. На рисунке 2 приведены внешний вид и внутреннее устройство солевого элемента питания.



Рисунок 2. Внешний вид и устройство "сухого" гальванического элемента

Не менее распространенным элементом питания являются щелочные марганцевые батарейки. В продаже их называют алкалиновыми, не утруждая себя переводом названия на русский язык. Внутреннее устройство алкалинового гальванического элемента показано на рисунке 2.



Рисунок 3. Внутреннее и устройство щелочного гальванического элемента

Эти химические источники тока обладают большей емкостью (2...3 A/ч) и они могут обеспечивать больший ток в течение длительного времени.Больший ток стал возможным, т.к. цинк используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия. Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), наиболее распространен в настоящее время.

Еще одним достаточно распространенным видом гальванических элементов являются литиевые барарейки. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов. Напряжение литиевых элементов равно 3 В. Однако на рынке представлены и 1,5 В литиевые батарейки. Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Применяются в основном для питания часов на материнских платах компьютеров и фототехнике. В качестве недостатка можно назвать высокую стоимость. Внешний вид литиевых батареек приведен на рисунке 4.



Рисунок 4. Внешний вид литиевых элементов питания

Следует отметить, что практически все гальванические элементы способны подзаряжаться от сетевых источников питания. Исключение составляют литиевые батарейки, которые при попытке подзаряда могут взорваться .

Для применения в различных устройствах батарейки были стандартизированы. Наиболее распространенные виды корпусов гальванических элементов приведены в таблице 2.

Для крепления батареек внутри корпуса радиоэлектронных устройств в настоящее время предлагаются готовые батарейные отсеки. Применение их позволяет значительно упростить разработку корпуса радиоэлектронного устройства и удешевить его производство. Внешний вид некоторых из них приведен на рисунке 5.



Рисунок 5. Внешний вид отсеков для крепления гальванических элементов питания

Первый вопрос, который волнует покупателей батареек — это время их работы. Оно зависит от технологии производства гальванического элемента. График типовой зависимости выходного напряжения от технологии производства элемента питания приведен на рисунке 5.



Рисунок 6. График времени работы элемента питания в зависимости от технологии производства при токе разряда 1 А

Результаты тестов батареек различных фирм, проведенные на сайте http://www.batteryshowdown.com/ приведены на рисунке 7.



Рисунок 7. График времени работы батареек различных фирм при токе разряда 1 А

И, наконец, давайте сделаем выводы где какой тип батареек имеет смыст применять, так как при приобретении батареек мы всегда стараемся получить максимум полезного эффекта при минимуме затрат.

  1. Не стоит покупать батарейки в киосках или на рынке. Обычно они там достаточно долго лежат и поэтому за счет саморазряда практически теряют свою емкость. Это может быть даже опасно для аппаратуры, т.к. при использовании дешевых гальванических элементов (батареек) из них может протечь электролит. Это приведет к выходу аппаратуры из строя! Покупать лучше в магазинах с хорошим оборотом товара.
  2. щелочные (алкалиновые) батарейки следует применять в устройствах, потребляющих достаточно большой ток, таких как фонарики, плееры или фотоаппараты. В малопотребляющих устройствах их срок работы не отличается от солевых батареек.
  3. Солевые («обычные», угольно-цинковые гальванические элементы), будут отлично работать в часах, ИК пультах и прочих устройствах, рассчитанных на работу от одного комплекта батарей в течении года и более. При этом они не могут работать на морозе.
  4. Самые экономически выгодные батарейки на сегодня — пальчиковые АА. Как мизинчиковые (АAА), так и большие (R20), при одной и той же емкости стоят дороже. Ёмкость современных батареек R20 почти такая же как и пальчиковых батареек АА, и это при в три раза больших размерах!
  5. Не стоит обращать внимание на раскрученные бренды. Гальванические элементы фирм Duracell и Energizer стоят в полтора-два раза дороже батареек остальных фирм и при этом работают примерно столько-же


Понравилась статья? Поделиться с друзьями: