Как вырабатывается кислород на земле. Откуда на Земле кислород

Земля

Всего лишь 2,3 миллиарда лет назад воздух, окружавший Землю, совершенно не содержал кислорода. Для тогдашних примитивных форм жизни это обстоятельство было сущим подарком.

Одноклеточные бактерии, обитавшие в первобытном океане, не нуждались в кислороде для поддержания своей жизнедеятельности. Затем что – то произошло.

Как на Земле появился кислород?

Ученые считают, что по мере развития некоторые бактерии «научились» извлекать из воды водород. Известно, что вода - это соединение водорода и кислорода, поэтому побочным продуктом реакции извлечения водорода было образование кислорода, выделение его в воду, а за тем и в атмосферу.

Некоторые организмы с течением времени приспособились жить в атмосфере с новым газом. Организм нашел способ обуздывать разрушительную энергию кислорода и использовать ее для управляемого распада питательных веществ, в процессе которого выделяется энергия, используемая организмом для поддержания своей жизнедеятельности.

Такой способ применения кислорода называется дыханием, которым мы пользуемся ежедневно, и посей день. Дыхание - это способ отвести от себя кислородную угрозу: оно сделало возможным развитие на Земле более крупных организмов - многоклеточных, имеющих уже сложное строение. В конце концов, именно благодаря появлению дыхания эволюция породила человека.

Материалы по теме:

Почему наклонена ось земли?

Откуда появился кислород на Земле?

За миллионы прошедших лет количество кислорода на земле увеличилось с 0,2 процента до нынешнего 21 процента атмосферы. Но в увеличении кислорода в воздухе атмосферы виноваты не только бактерии океанов. Ученые считают, что другим источником кислорода были сталкивающиеся континенты. По их мнению, при столкновении, а затем при последующем расхождении континентов в атмосферу выделялись большие количества кислорода.

Каким образом? В результате столкновений и расхождений континентов на морское дно опускались огромные осадочные породы, увлекавшие за собой большое количество органических веществ. Если бы этого не происходило, то кислорода было бы больше потрачено на переваривание и окисление этих органических веществ. Поскольку они стали недоступны окислению, то происходила своеобразная экономия кислорода, и его объем в атмосфере становился больше.

Не одно столетие между учеными длятся дебаты о реальном источнике кислорода на Земле. По предварительным данным первую половину жизни планета Земля вообще была без кислорода. Большая часть ученых выдвигает теорию о том, что 2,4 млрд лет назад кислород на Земле был незначительным. Кислородом наша атмосфера наполнялась постепенно.

Как на Земле появился кислород? Считается, что основной источник кислорода на Земле - цианобактерии. Это фотосинтезирующий микроб, который порождает кислород. И благодаря цианобактерии произошел резкий скачек содержания кислорода в атмосфере. Но когда и благодаря чему появились эти микробы пока до конца не известно. Также до конца еще не понятно как именно происходил процесс наполнения атмосферы Земли кислородом. Известно, что это было сочетание резкого глобального похолодания, зарождение новых видов, и появление новых минеральных пород. Как заявил Доминик Папине (специалист института Карнеги, Вашингтон), учение пока не в силах четко определить, что было причиной, а что следствием. Многое произошло практически одновременно и по этой причине так много разных несостыковок и противоречий. Чтобы больше прояснить геологическую сторону этого вопроса, Доминик Папине детально изучает процесс образование железа, а также осадочных пород, что формируются на самом дне древних морей.

Его исследования направлены на особые минералы. Эти минералы содержаться именно в образованиях железа, и они вполне могут быть связаны с возникновением жизни древних микробов и их смерти. Минералы железа, которые находятся довольно на дне морей – самый большой источник железной руды. И это не просто материал для изготовления стали. По словам геологов именно в нем скрыта богатая история зарождения жизни на планете Земле.

А происхождение этого источника до сих пор остается большой загадкой. Ученые выяснили, что для его формирования нужна помощь особых микроэлементов, но, правда, пока неизвестно каких именно. Эти морские организмы простые одноклеточные, но к сожалению никакой информации они не оставили после себя. И исследователи не могут теперь узнать, какими именно они были, и что из себя представляли.

Предполагают, что строителем таких железных минералов была именно цианобактерия. Кислород, который выходил из нее окислял железо в морях и океанах еще далеко до того как произошел великий кислородный взрыв. Но остается не ясным одно. Цианобактерия, появилась на планете Земля задолго до накопления кислорода. Выходит, что прошли сотни миллионов лет, перед тем как наша атмосфера наполнилась кислородом?

Возможно ответ в сложном переплетении биологии и геологии. Кислород, который выдыхала цианобактерия, мог разрушаться метаном. А при взаимодействии двух этих газов формируются вода и углекислый газ. Ученые отметили, что кислород никак не может накапливаться в среде богатой на метан. Метаногены вырабатывали метан и перекрывали все пути к накоплению кислорода на планете и еще нагревали Землю в результате парникового эффекта. А после того как планета Земля наполнилась кислородом количество данных организмов сократилось.

В которой экспериментально подтверждают свою гипотезу, объясняющую появление на Земле кислорода нерастительного происхождения.

Почти все живое использует для дыхания кислород. Не вникая особенно в физику и химию процессов клеточного дыхания, скажем, что выбор эволюции пал на кислород из-за его высокой способности к окислению, то есть тому, чтобы легко присоединять лишний электрон. Электрон поступает в электротранспортную цепь от НАДH или ФАДH 2 путешествует по ней, и все заканчивается синтезом молекулы АТФ - материальным эквивалентом запасенной энергии и присоединением электрона к кислороду. Вся эта реакция становится возможной, потому что такой перенос электрона энергетически выгоден, а это частично обусловлено свойствами кислорода.

Когда жизнь на Земле зарождалась, кислорода в атмосфере практически не было, как нет его сегодня на Венере или Марсе. Древние бактерии были вынуждены использовать другие окислители , зачастую энергетически менее выгодные, зато доступные. NO 3 - , NO 2 - , Fe 3+ , фумарат и диметилсульфоксид, используемые некоторыми видами бактерий, обладают более высоким окислительно-восстановительным потенциалом и менее выгодны в качестве окислителей. Многие бактерии, использующие один из этих окислителей, способны также и к кислородному дыханию. При наличии кислорода они дышат им (это выгоднее), а когда кислорода нет, - другим своим окислителем (надо же как-то). Серосодержащие окислители (S, SO 4 -) обладают более низким окислительно-восстановительным потенциалом. Это, однако, делает кислород токсичным для соответствующих микроорганизмов, и в атмосфере, содержащей кислород, они погибают. У более высокоорганизованных жизненных форм анаэробное дыхание встречается редко и почти никогда не служит основным источником энергии.

Могли ли высокоразвитые формы жизни использовать в качестве окислителя не кислород? Кислород в качестве окислителя энергетически выгоднее большинства других субстратов (чем ниже окислительно-восстановительный потенциал окислителя, тем больше энергии выделяется при прохождении электрона через электротранспортную цепь). Значит, дышащие кислородом организмы обладали более эффективным метаболизмом, были лучше адаптированы. С энергетической точки зрения серосодержащие субстраты тоже вполне выгодны. Проблема, правда, заключается в том, что обладатели такого типа дыхания гибнут в присутствии кислорода. До сих пор не вполне понятно , почему именно это происходит. То есть, если бы в атмосфере Земли не появился кислород, со временем обладатели сульфатного дыхания могли бы эволюционировать и дальше. Но кислород появился, и им пришлось отправиться в «резервации», куда кислород не поступает.

Вопрос в том, откуда появился кислород. На сегодняшний день в атмосфере Земли примерно 20% кислорода. В таких огромных количествах его выделяют фотосинтезирующие растения, в основном, деревья и водоросли. Но фотосинтезирующие растения сами теперь в большинстве своем дышат кислородом. Чтобы в ходе эволюции мутации, позволяющие дышать кислородом, закрепились, это должно быть выгодно, значит, должен быть кислород. В большом количестве кислород на Земле появился благодаря цианобактериям . Это азотфиксирующие бактерии, умеющие фотосинтезировать. То есть массово кислород появился на Земле как побочный продукт фотосинтеза. Это событие называют «Кислородной катастрофой », видимо, за масштаб последствий.

А вот на вопрос о том, был ли кислород до этого, остается открытым. Последние 40 лет все увереннее стали говорить, что кислород был и до Кислородной катастрофы, и вот теперь возможность его существования подтверждена экспериментально.

До сегодняшнего дня был известен только один способ возникновения молекулярного кислорода в тогдашних условиях. Он состоит из двух стадий: диссоциации углекислого газа под воздействием солнечного ультрафиолета на угарный газ и атомарный кислород и реакции двух атомов кислорода, требующей третьего участника: атомы объединяются в молекулу, а носитель (M) уносит лишнюю энергию.

CO 2 + hν(UV) → CO + O

O+O+M → O 2 + M

Однако же расчеты, а затем и эксперимент, проведенные авторами обсуждаемой статьи показали, что кислород может под действием ультрафиолета образовываться из углекислого газа в один шаг:

CO 2 + hν(UV) → C+O 2

В эксперименте использовался лазер с длиной волны 200 нм, свет с такой длиной волны обычно поглощается атмосферой, поэтому реакция должна была протекать в верхних ее слоях. Такая реакция может и сейчас, когда содержание углекислого газа в атмосфере увеличивается, происходить в верхних слоях атмосферы Земли, а может и в атмосферах других планет.

События

Первая часть истории существования Земли была лишена кислорода, в этот период на ней не было жизни. До сих пор продолжаются дебаты относительно того, кто были главными биологическими игроками на безкислородной Земле, но большинство исследователей ищут корни данного вопроса в древнейших осадочных породах.

Большинство учёных предполагают, что количество кислорода на Земле было очень незначительным около 2,4 миллиардов лет назад, пока атмосфера не наполниласьь кислородом. Этот резкий скачок в содержании кислорода в атмосфере произошёл благодаря цианобактерии – фотосинтезирующему микробу, который выдыхает кислород.

Как и когда появились микробы, выдыхающие кислород, до сих пор не определено в связи с тем, что наполнение атмосферы кислородом представляло собой сложное сочетание глобального резкого похолодания, зарождения минеральных пород, а также появления новых видов.

"Мы пока не в состоянии определить, что является причиной, а что следствием", - отметил Доминик Папине, специалист вашингтонского института Карнеги. "Многие вещи произошли практически одновременно, поэтому так много неясностей". Для того, чтобы помочь разобраться в геологической стороне вопроса Папине изучает диапазон образований железа и осадочных пород, которые формируются на дне древних морей.

Исследование Папине сфокусировано на особых минералах, которые содержатся в образованиях железа, и которые могут быть связаны с возникновением жизни и смерти древних микробов. Минералы железа, находящиеся глубоко на дне морей, являются самым крупным источником железной руды. Тем не менее, этот источник представляет собой нечто большее, чем просто материал для изготовления стали. Геологи исследуют их, так как именно они имеют богатую историю, связанную с зарождением жизни на Земле.

Однако, их происхождение – это очень большая загадка. Самый последний вывод, к которому пришли большинство учёных, заключается в том, что для их формирования необходима помощь особых микроэлементов, к сожалению, пока ещё не выявлено каких именно. Эти простые одноклеточные морские создания не оставили ничего, что могло бы помочь исследователям воссоздать их образ и понять что они из себя представляют.

Возможно, что строителем этих железных минералов была цианобактерия, а кислород из этих бактерий и вызвал окисление железа в морях и океанах еще до великого кислородного взрыва. В таком случае почему, если цианобактерия на самом деле появилась задолго до накопления кислорода на Земле, прошло несколько сотен миллионов лет, прежде чем атмосфера наполнилась кислородом?

Возможно, Папине и его коллеги нашли ответ на вопрос в виде сложного переплетения биологии и геологии. Кислород из цианобактерии мог быть разрушен метаном. При взаимодействии этих двух газов образуется углекислый газ и вода. Также они отметили, что кислород не может накапливаться в богатой метаном среде.

Метан появился из бактерий под названием метаногены, результатом поглощения этими бактериями углекислого газа и водорода, и стало появление метана. По этому сценарию развития событий, метаногены и цианобактерии верховенствовали в древних морях и океанах, но количество метаногенов было больше, поэтому, когда они вырабатывали метан, он перекрывал пути кислорода на накапливание, а также нагревал планету в результате парникового эффекта. Но после того, как Земля стала "кислородной", количество этих организмов резко сократилось, что позволило атмосфере заполниться этим газом.

Первая часть истории существования Земли была лишена кислорода, в этот период на ней не было жизни. До сих пор продолжаются дебаты относительно того, кто были главными биологическими игроками на безкислородной Земле, но большинство исследователей ищут корни данного вопроса в древнейших осадочных породах.

Большинство учёных предполагают, что количество кислорода на Земле было очень незначительным около 2,4 миллиардов лет назад, пока атмосфера не наполниласьь кислородом. Этот резкий скачок в содержании кислорода в атмосфере произошёл благодаря цианобактерии – фотосинтезирующему микробу, который выдыхает кислород.

Как и когда появились микробы, выдыхающие кислород, до сих пор не определено в связи с тем, что наполнение атмосферы кислородом представляло собой сложное сочетание глобального резкого похолодания, зарождения минеральных пород, а также появления новых видов.

«Мы пока не в состоянии определить, что является причиной, а что следствием», — отметил Доминик Папине, специалист вашингтонского института Карнеги. «Многие вещи произошли практически одновременно, поэтому так много неясностей». Для того, чтобы помочь разобраться в геологической стороне вопроса Папине изучает диапазон образований железа и осадочных пород, которые формируются на дне древних морей.

Исследование Папине сфокусировано на особых минералах, которые содержатся в образованиях железа, и которые могут быть связаны с возникновением жизни и смерти древних микробов. Минералы железа, находящиеся глубоко на дне морей, являются самым крупным источником железной руды. Тем не менее, этот источник представляет собой нечто большее, чем просто материал для изготовления стали. Геологи исследуют их, так как именно они имеют богатую историю, связанную с зарождением жизни на Земле.

Однако, их происхождение – это очень большая загадка. Самый последний вывод, к которому пришли большинство учёных, заключается в том, что для их формирования необходима помощь особых микроэлементов, к сожалению, пока ещё не выявлено каких именно. Эти простые одноклеточные морские создания не оставили ничего, что могло бы помочь исследователям воссоздать их образ и понять что они из себя представляют.

Возможно, что строителем этих железных минералов была цианобактерия, а кислород из этих бактерий и вызвал окисление железа в морях и океанах еще до великого кислородного взрыва. В таком случае почему, если цианобактерия на самом деле появилась задолго до накопления кислорода на Земле, прошло несколько сотен миллионов лет, прежде чем атмосфера наполнилась кислородом

Возможно, Папине и его коллеги нашли ответ на вопрос в виде сложного переплетения биологии и геологии. Кислород из цианобактерии мог быть разрушен метаном. При взаимодействии этих двух газов образуется углекислый газ и вода. Также они отметили, что кислород не может накапливаться в богатой метаном среде.

Метан появился из бактерий под названием метаногены, результатом поглощения этими бактериями углекислого газа и водорода, и стало появление метана. По этому сценарию развития событий, метаногены и цианобактерии верховенствовали в древних морях и океанах, но количество метаногенов было больше, поэтому, когда они вырабатывали метан, он перекрывал пути кислорода на накапливание, а также нагревал планету в результате парникового эффекта. Но после того, как Земля стала «кислородной», количество этих организмов резко сократилось, что позволило атмосфере заполниться этим газом.



Понравилась статья? Поделиться с друзьями: