Как действует лазерная сеть защиты. Защита от лазерных излучений. Средства защиты от лазерного излучения

В народном хозяйстве в настоящее время все более широкое применение находят лазеры.

Лазерное излучение – это электромагнитное излучение, которое генерируется в диапазоне длин волн 0,2…1000мкм. Диапазон длин волн, которые излучаются (оптическими) квантовыми генераторами (ОКГ) – лазерами, охватывает видимый спектр, а также располагается в инфракрасной и ультрафиолетовой областях.

Наиболее часто ОКГ используются с длинами волн 0,49, 0,51, 0,53, 0,63, 0,694, 1,06, 10,6 мкм. В соответствии с ГОСТ 12.1.040 – 83 «Лазерная безопасность. Общие положения» по степени опасности генерированного излучения лазеры подразделяются на четыре класса.

В процессе их применения возникает опасность поражения людей электротоком высокого напряжения зарядных устройств, ультрафиолетовым излучением импульсных ламп и электромагнитными полями высокой частоты.

Кроме того, при эксплуатации лазерных установок возможны значительные поступления в воздушную среду химических загрязнений, возникновение взрывов и пожаров. Все это обусловило появление новых проблем по защите человека от вредного воздействия лазеров и потребовало разработки специальных санитарных норм при эксплуатации лазеров. В настоящее время Министерством здравоохранения Украины утверждены санитарные нормы при работе с оптическими квантовыми генераторами, которыми определены максимально допустимые уровни интенсивности облучения лазерами. «Санитарные нормы и правила эксплуатации лазеров № 2392-81» устанавливают гранично допустимые уровни лазерного излучения в диапазоне 0.2…20 мкм.

Гранично допустимые уровни лазерных излучений (Дж/см 2) зависят от длины волны, продолжительности импульса, частоты повторения импульса, режима генерации, продолжительности действия.

Лазер - это генератор узконаправленного пучка электромагнитных колебаний очень большой плотности мощности, охватывающих широкий оптический диапазон. Плотность потока мощности на поверхности, облучаемой лазером, достигает 10 11 - I0 14 Вт/см 2 . В качестве иллюстрации высокого уровня энергии лазерного луча можно отметить, что для испарения самых твердых элементов требуется плотность мощности 10 Вт/см 2 .

Современные лазерные установки способны генерировать концентрированный пучок высокочастотных электромагнитных импульсов большой мощности длительностью всего в несколько наносекунд. Мощный поток энергии лазера, попадая в мягкую биологическую ткань, может вызвать поражения кожи, глаз, а также различные функциональные расстройства центральной нервной системы, желез внутренней секреции икровообращения. Чрезвычайно опасно лазерное излучение для органов зрения. Лазерный луч, попав в глаз и сфокусировавшись хрусталиком на его сетчатке может обжечь её и вызвать потерю зрения.

Отраженный лазерный луч не менее опасен, чем прямой. Зеркально отразившись от поверхностей, обладающих блескостью, и попав на человека, лазерный поток может вызвать повреждение его здоровья.

Опасность поражения электротоком может исходить от высоковольтных батарей конденсаторов, газоразрядных импульсных ламп или ламп непрерывного горения, являющихся источниками энергии в некоторых типах лазерных установок. Поэтому вопросам электробезопасности при их эксплуатации необходимо уделять должное внимание. Методы защиты от вредного воздействия электромагнитных полей могут быть использованы и для защиты от лазерного излучения: организация работ и надежное экранирование.

Необходимы тщательный медицинский отбор и хорошая инженерно-техническая подготовка персонала, обслуживающего лазерную установку, а также правильная организация его труда.

В помещениях, где размещены лазерные установки, должны быть четко определены опасные зоны и оформлено надежное их экранирование. Основные методы защиты от лазерного излучения определены «Санитарными нормами и правилами использования и эксплуатации лазеров» № 2392-81. Лазерная установка должна работать в таких условиях, чтобы исключалась возможность зеркального отражения лазерного излучения и возникновения пожаров и взрывов. Поэтому в этих помещениях не должно быть полированных, блестящих поверхностей, от которых может отразиться лазерный поток. Светильники должны обеспечивать равномерное и обильное освещение, способствующее сокращению зрачков глаз человека. Минимальные размеры зрачков снижают вероятность проникновения лазерных излучений на сетчатку глаз и поражения органов зрения. Использование автоблокировки повышает безопасность эксплуатации установки, т.к. исключает возможность включения ее в работу при открытом экране. Для определения мощности плотности энергии лазерных излучений применяются специальные приборы. На дверях должна быть звуковая и световая сигнализация, сблокированная с рубильником включения лазера. Также должен быть вывешен знак лазерной опасности. Для защиты от лазерного излучения применяют спецодежду, маски, перчатки и защитные очки со светофильтрами по ГОСТ 94II-88 (выбираемыми в зависимости от длины волн излучений).

Защиту осуществляют техническими, организационными, лечебно-профилактическими методами и средствами. Используются следующие принципы защиты: 1. защита расстоянием; 2. защита временем; 3. ослабление излучение (светофильтры).Средства защиты должны снижать уровни лазерного излучения, действующего на человека, до величин ниже ПДУ. Они не должны уменьшать эффективность технологического процесса и работоспособность человека. Их защитные характеристики должны оставаться неизменными в течение установленного срока эксплуатации. Выбор средства защиты в каждом конкретном случае осуществляется с учетом требований безопасности для данного процесса. Средства коллективной защиты (СКЗ) должны соответствовать требованиям ГОСТ 12.4.011-89. Средства индивидуальной защиты (СИЗ) применяются при проведении пуско-наладочных и ремонтных работ, работ с открытыми лазерными изделиями типа лидара и т. п. Средства индивидуальной защиты от лазерного излучения включают в себя средства защиты глаз и лица (защитные очки, щитки, насадки), средства защиты рук, специальную одежду. При выборе средства индивидуальной защиты необходимо учитывать: рабочую длину волны излучения; оптическую плотность светофильтра. Защитные лицевые щитки необходимо применять в тех случаях, когда лазерное излучение представляет опасность не только для глаз, но и для кожи лица. Конкретная толщина светофильтра должна обеспечивать необходимую оптическую плотность. Надежным средством защиты глаз от лазерного излучения в области спектра Х= 0,63...1,5 мкм являются защитные очки, изготовленные из сине-зеленого стекла.Защитные щитки необходимо использовать когда излучение представляет опасностьне только для глаз, но и для кожи. Иногда для защиты глаз используются защитные насадки. К персоналу, связанному с эксплуатацией лазерной техники, предъявляются повышенные требования, как в части профессионального отбора, так и в части обучения и проверки знаний по охране труда. Персонал, допускаемый к работе с лазерными изделиями, должен пройти предварительный медицинский осмотр, инструктаж и специальное обучение безопасным приемам и методам работы. Персонал, обслуживающий лазерные изделия, обязан изучить техническую документацию, инструкцию по эксплуатации, ознакомиться со средствами защиты и инструкцией по оказанию первой помощи при несчастных случаях. Особое внимание необходимо уделять защите глаз, так как воздействие лазерного излучения может приводить к необратимым последствиям - слепоте. Поэтому в случае подозрения или очевидного облучения глаз (кожи) лазерным излучением следует немедленно обратиться к врачу для специальногообследования. Методы защиты от лазерного излучения: Технические методы1. Выбор, планировка и внутренняя отделкапроизводственных помещений 2. Размещение лазерных технологических установок З. Порядок обслуживания установок 4. Использование минимального уровня излучения, обеспечивающего достижение поставленной цели 5. Организация рабочего места 6. Применение средств защиты. Организационные методы: 1. Ограничение времени воздействия излучения 2. Назначение лиц, ответственных за организацию и проведение работ З. Осуществление допуска к проведению работ 4. Организация надзора за проведением работ 5. Организация противо-аварийных работ и установление порядка ведения работ в аварийных условиях 6. Инструкции, плакаты 7. Обучение и инструктаж 8. Ограничение допуска Лечебно-профилактические методы:1. Контроль за уровнями опасных и вредных производственных факторов на рабочих местах 2. Контроль за прохождением персоналом предварительных и периодических медицинских осмотров3. Повышение сопротивляемости организма путем создания у работающих активного или пассивного иммунитета Средства защиты от лазерного излученя: 1. Оградительные устройства (кожухи, экраны и т. д.) 2. Дистанционное управление З. Устройство сигнализации (ясно воспринимаемый световой или звуковой сигнал) 4. Маркировка знаком лазерной опасности 5. Кодовый замок б. Защитные очки, снижающие уровень диффузного излучения на роговице глаза до ПДУ 7. Защитные запоры оградительного устройства или его частей 8. Защитная одежда 9. Юстировочные очки (снижающие уровень коллимированного излучения на роговице глаза до ПДУ) Методы и средства измерения лазерного излучения дозиметрический контроль лазерного излучения на рабочих местах должен оценивать те характеристики излучения, которые определяют его способность вызывать неблагоприятные биологические эффекты. Различают 2 формы: 1. предупредительный (оперативный); 2. индивидуальный. Предупредительный заключается в определении максимальных уровней энергетических параметров лазерного излучения на границе рабочей зоны. Индивидуальный заключается в измерении уровней энергетических параметров излучения, воздействующего на работника, его глаза и кожу в течение рабочего дня. Предупредительный проводиться в соответствии с регламентом, утвержденным администрацией предприятия не реже 1 раза в год, а также в след. случаях: при введении в эксплуатацию новых лазерных изделий; при изменении конструкции средств защиты; при изменении конструкции лазера, при. АРМ. Индивидуальный проводят при работе на открытых лазерных установках, а также когда возможно попадание лазера на глаза или кожу. Для измерения используются спец.приборы - лазерные дозиметры. Бывают индикаторного типа, которые дают звуковой или световой сигнал, при превышения в заданной точке ПДУ. Измерительные, которые предназначены для измерения нормируемых параметров. Анализирующие, которые не только измеряют интенсивность, но и проводят анализ распределения. Наиболее часто используются измерительные, предел погрешности 30%.

Защита персонала от лазерного излучения осуществляется техническими, организационными и санитарно-гигиеническими методами и средствами.

К основным организационным мероприятиям относятся:

Рациональное размещение лазерных установок;

Ограничение времени воздействия излучения;

Обучение персонала;

Проведение инструктажей;

Выбор, планировка и внутренняя отделка помещений;

Организация рабочего места.

К техническим мероприятиям относятся:

Применение коллективных средств защиты;

Применение индивидуальных средств защиты.

Санитарно-гигиенические и лечебно-профилактические методы включают:

Контроль за уровнями опасных и вредных производственных факторов на рабочих местах;

Контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

Технические средства защиты применяются для предотвращения воздействия или снижения уровня излучения до допустимых значений, не ограничивая при этом технологических возможностей лазеров и не снижая работоспособность человека. Их защитные характеристики должны оставаться неизменными в течение установленного срока эксплуатации.

К средствам коллективной защиты от лазерного излучения относятся:

1) оградительные устройства (экраны, щиты, смотровые окна, световоды, перегородки, камеры, кожухи, козырьки, бленды и др.), подразделяемые:

По принципу ослабления на поглощающие; отражающие и комбинированные;

По степени ослабления на непрозрачные и частично прозрачные;

2) предохранительные устройства, подразделяемые по конструктивному исполнению на:

Оптические устройства для визуального наблюдения и юстировки с вмонтированными светофильтрами;

Юстировочные лазеры;

Телеметрические и телевизионные системы наблюдения;

Индикаторные устройства;

Устройства автоматического контроля и сигнализации;

Устройства дистанционного управления;

Символы органов управления.

Средства индивидуальной защиты от лазерного излучения включают:

Средства защиты глаз и лица (защитные очки, щитки, насадки);

Средства защиты рук (перчатки);

Специальную одежду (халаты из хлопчатобумажной или бязевой ткани).

Средства индивидуальной защиты глаз и лица применяются только в тех случаях (пусконаладочные, ремонтные, экспериментальные работы), когда коллективные средства не обеспечивают безопасность персонала.

Применение различных средств защиты от лазерного излучения в зависимости от класса опасности лазера приведено в табл. 31.

Расположение защитных устройств в лазерной установке дано на рис. 87. Экраны и элементы оградительных устройств изготавливаются из огнестойких материалов, не выделяющих вредных веществ при высоких температурах. Конструкция лазерной установки должна исключать воздействие на работающих прямых и диффузных лазерных излучений.


Таблица 31

Средства защиты от лазерного излучения

Примечание. ЛОЗ (лазерно-опасная зона) – часть пространства, в пределах которого уровень лазерного излучения превышает предельно допустимый уровень. Юстировка лазера – это совокупность операций по регулировке оптических элементов лазерного изделия для получения требуемых пространственно-энергетических характеристик лазерного излучения.

Очки должны быть прозрачными в диапазоне 400-700 нм, чтобы тот, кто их носит, мог видеть сквозь них и работать, но чем больше участков спектра должно быть блокировано, отфильтровано такими очками, тем менее прозрачными и приемлемыми для пользователя они делаются. Пик чувствительности глаза приходится на 530-550 нм, и чем ближе к этому интервалу подходит длина волны, которую нужно перекрыть, тем более темными становятся очки. Способ обойти эту принципиальную трудность ещё не придуман, и потому пользователям, работающим с различными лазерными источниками излучения, приходится запасаться не одними, а целым набором защитных очков, чтобы на любой используемой длине волны обеспечить баланс между надёжной защитой от лазерного излучения и хорошей прозрачностью используемых очков в видимом диапазоне.

Повышение мощности используемых лазеров является ещё одной «головной болью» для производителей защитных очков, но на практике безопасность для персонала обеспечивается обычно полным экранированием мощного лазера, переводом его в Класс 1.

Защитные очки делятся по диапазонам длины волны света, который они отфильтровывают. А именно 190-366nm - Ультрафиолетовый свет, 405 - Фиолетовый свет, 445-450 - Синий свет, 532 - Зелёный, 635-650 - Красный, 780-1064 и более - Инфракрасный свет. У некоторых очков такой диапазон защиты может быть один, как например у оранжевых(190-540nm), это значит, что они защищают и от ультрафиолетового, фиолетового, синего и зелёного света. Так же бывают и очки с двойным защитным диапазоном, например у очков чайного цвета диапазон раздваивается на 200-540nm и 800-1700nm. Это означает что их действие распространяется на синий, зелёный и свет инфракрасного лазера, что может быть полезно если у вас есть несколько различных лазеров. классификация лазеров

Ещё одним параметром очков является их оптическая плотность (OD-Optical density) ,бывает она OD4, OD5, OD5+, OD7, у каждых очков существует свой график распределения плотности по разным длинам волн, то есть у одних очков может быть разная оптическая плотность для разного света. Одни и те же защитные очки, могут к примеру иметь плотность OD5+ для синего света, но для зелёного OD4.

Важным аспектом лазерных защитных очков является оптическая плотность. Это в основном, насколько сильны очки. Чем сильнее ваш лазерный луч, тем выше OD оно требует, чтобы ваши глаза были в безопасности. Однако энергия пучка не является единственной переменной, которая влияет на OD.

Из всего сказанного выше можно сделать один единственный вывод: мы - обладатели всего одной пары глаз и в наших интересах продлить их целостность и здоровье как можно дольше. Поэтому не пренебрегаем самым простым правилом безопасности - не смотреть на лазерный луч. Если уж очень хочется, или в этом есть необходимость, то в этом случае предлагаем Вам прибегнуть к выбору защитных очков. Кстати, так как компания Gistroy заботится о безопасности Вашего зрения, в комплекте с каждым приобретенным гравером в обязательном порядке идут очки, а во всех моделях, кроме станков с диодом 5,5 Вт, также предусмотрены защитные шиберы для гашения лазерного излучения.

С целью обеспечения безопасности работ с лазерами при разработке проектов, планировок и размещении оборудования прежде всего должны быть предусмотрены меры по защите работающих от лазерных излучений, а также от других сопутствующих опасных и вредных производственных факторов.

Наличие того или иного неблагоприятного фактора зависит от типа и мощности лазеров, а также от условий их применения. Перечень опасных и вредных производственных факторов, которые могут присутствовать при эксплуатации лазеров I-IV классов, приведен в табл. 11.1.

Для защиты от лазерного излучения предусматриваются следующие меры.

Размещение лазерных установок разрешается только в специально оборудованных помещениях. Следует избегать размещения в одном помещении двух и более лазерных установок. В последнем случае для каждой установки отводят отдельный светонепроницаемый бокс. Двери помещений, в которых размещены лазерные установки III, IV классов, должны быть заперты на внутренние замки с блокирующими устройствами, исключающими доступ в помещения во время работы лазеров, а также иметь автоматически включающееся световое табло «Опасно, работает лазер!»

На дверях помещений, оборудовании, приборах и в других местах, где имеется лазерное излучение, должен быть знак лазерной опасности «Опасно. Лазерное излучение» по ГОСТ 12.4.026-2001.

Установку размещают таким образом, чтобы луч лазера был направлен на капитальную, неотражающую, огнестойкую стену, но не на окна, двери, некапитальные сооружения, способные пропускать излучение. Стены и потолки окрашивают матовой краской с малой отражающей способностью. Для фона мишени рекомендуется темная краска с высоким коэффициентом поглощения, а для окружающей площади – светлая. Предметы, находящиеся в помещении, за исключением специальной аппаратуры, не должны иметь зеркальных поверхностей. Если этого нельзя избежать, то такие поверхности драпируют материалом (черной байкой или другими подобными).

Следует избегать работ с лазерными установками при затемнении помещения. Естественное и искусственное освещение должно быть обильным, чтобы зрачок глаза всегда имел минимальные размеры. Никакие работы не должны производиться при недостаточном освещении.

Для предотвращения поражения прямым или зеркально отраженным лучом лазера предусматриваются ограждения, исключающие возможность выхода луча за пределы установки закрытого типа и возможность проникновения человека в зону прохождения луча; применяются блокировки или затворы для защиты глаз работающего на установке, в которой системы наблюдения совпадают с оптической системой.

Оградительные устройства – для защиты от лазерного излучения подразделяют:

По способу применения – стационарные и передвижные;

По конструкции – откидные, раздвижные, съемные;

По способу изготовления – сплошные, со смотровыми стеклами, с отверстием переменного диаметра;

По структурному признаку – простые, составные (комбинированные);

По виду применяемого материала – неорганические, органические, комбинированные;

По принципу ослабления – поглощающие, отражающие, комбинированные;

По степени ослабления – непрозрачные, частично прозрачные;

По конструктивному исполнению – бленды, диафрагмы, заглушки, затворы, кожухи, козырьки, колпаки, крышки, камеры, кабины, мишени, обтюраторы, перегородки, световоды, смотровые окна, ширмы, щитки, шторки, щиты, шторы, экраны.

При изготовлении экранирующих щитов, ширм, штор необходимо применять непрозрачные теплостойкие материалы. Если отсутствует опасность возникновения пожара от луча лазера, ограждения могут быть выполнены из плотной ткани.

Помещения, в которых при эксплуатации лазерных установок происходит образование вредных газов и аэрозолей, должны быть оборудованы общеобменной, а в необходимых случаях и местной вытяжной вентиляцией для удаления загрязненного воздуха с последующей его очисткой. В случае использования веществ I и II классов опасности должна быть предусмотрена аварийная вентиляция.

При работе лазеров на открытом месте следует обозначить зону повышенной плотности энергии излучения и оградить ее стойкими, непрозрачными экранами для исключения возможности выхода луча за пределы этой зоны. Следует избегать работы наружных установок при плохой погоде, так как туманы, снег, пыль усиливают рассеивание лучей.

Для оценки опасности действия лазерного излучения в производственных условиях следует произвести расчет лазерно опасной зоны.

Расчет границ лазерно опасной зоны

Достаточно надежным и простым методом определения границы лазерно опасной зоны может быть расчет плотности потока излучения (облученности) в различных точках пространства вокруг лазерных установок. При проведении такого расчета необходимо знать выходные характеристики лазерного излучения и коэффициент отражения (альбедо) излучения от мишени ρ. Наиболее важными характеристиками лазерного излучения, определяющими его воздействие на биологические объекты, являются: длина волны, диаметр и расходимость пучка, длительность и частота повторения импульсов, энергия (мощность) излучения. Как правило, эти параметры известны из паспортных данных лазерной установки с достаточной точностью.

При определении границ лазерно опасной зоны исходят из предположения, что воздействие на человека прямых и зеркально отраженных лучей исключено конструкцией установки.

Расчет лазерно опасной зоны начинают с определения границ зоны 1 , внутри которой источник излучения (отражающая поверхность) является для глаза протяженным, рис. 11.1.

Рис. 11.1. Схема к расчету лазерно опасной зоны:

I – граница зоны 1 ; II - граница лазерно опасной зоны; III - граница зоны, внутри которой

излучение представляет опасность для кожи; 1 – лазер; 2 - мишень

Отражающая поверхность будет протяженным источником в том случае, если она видна под углом большим или равным α min . Угол α min определяется из условия, когда поверхность с энергетической яркостью L е , равной ПДУ для диффузно отраженного излучения, создает на роговице глаза энергетическую освещенность, соответствующую ПДУ для коллимированного излучения, т.е.

, (11.6)

где Θ - угол между направлением визирования и нормалью к поверхности; - энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения.

Значения α min для различных длительностей экспозиций приведены в табл. 11.2.

Таблица 11.2.

Предельный угол видения протяженного источника

Угол видения отражающей поверхности α вычисляется по формуле:

, (11.7)

где S q – площадь пятна на отражающей поверхности; R – расстояние от поверхности до наблюдателя.

Подставив в формулу (11.7) выражение для α min (11.6), определим значение радиуса зоны 1 – R 1:

, (11.8)

где Е э " – энергетическая освещенность на роговице глаза, равная ПДУ для коллимированного излучения; L е ´ – энергетическая яркость поверхности, равная ПДУ для диффузионно отраженного излучения.

Граница лазерно опасной зоны определяется в каждом конкретном случае по следующей схеме:

1) рассчитывается угол видения отражающей поверхности по формуле (11.7);

2) полученное по формуле (11.7) значение угла α сравнивается с предельным углом видения протяженного источника α min , при этом могут возникнуть две ситуации:

а) угол видения отражающей поверхности меньше α min (точечный источник); в этом случае граница лазерно опасной зоны вычисляется по формуле:

(11.9)

б) угол видения отражающей поверхности больше α min (протяженный источник). В этом случае повреждение органов зрения определяется энергетической яркостью отражающей поверхности L е. Если энергетическая яркость диффузно отражающей поверхности меньше ПДУ, то источник является безопасным. Если энергетическая яркость равна ПДУ, то граница лазерно опасной зоны совпадает с границей зоны I (рис. 11.1), вычисляемой по формуле (11.8). И, наконец, если энергетическая яркость превышает ПДУ, то граница лазерно опасной зоны вычисляется по формуле (11.9).

Лазерное излучение может представлять также опасность для кожи. В этом случае опасность лазерного излучения определяется величиной облученности кожных покровов и не зависит от геометрических размеров источников излучения. Граница зоны, внутри которой необходимо использовать средства защиты кожи, вычисляется по формуле (11.9), в которую необходимо вместо ПДУ для глаз подставить значение ПДУ для кожи.

Расчет лазерно опасной зоны при длине волны излучения, находящейся вне интервала 0,4-1,4 мкм, проводится по формуле (11.9) независимо от геометрических размеров источника излучения.

Расчетный метод оценки границ лазерно опасной зоны является ориентировочным (рис. 11.1), так как он требует знаний энергетических характеристик лазерного излучения, коэффициента отражения излучения, закона отражения и не учитывает дополнительно отраженного от различных предметов (оптических элементов и т.п.) излучения. Более точным является экспериментальный метод, позволяющей по результатам измерений строить истинную картину поля излучения вокруг лазерных установок.

Меры защиты от других опасных и вредных факторов, возникающих при эксплуатации лазерных установок (см. табл. 11.1), выбирают с учетом требований, изложенных в соответствующих разделах данной книги.

Средства индивидуальной защиты

СИЗ от лазерного излучения включают в себя средства защиты глаз и лица (защитные очки, щитки, насадки), средства защиты рук, специальную одежду. При выборе СИЗ необходимо учитывать рабочую длину волны излучения и оптическую плотность светофильтра.

Оптическая плотность светофильтров, применяемых в защитных очках, щитках и насадках, должна удовлетворять требованиям:

, (11.10)

или (для диапазона 380 < λ £1400 нм)

, (11.11)

где , , , - максимальные значения энергетических параметров лазерного излучения в рабочей зоне; , , , - предельно допустимые уровни энергетических параметров при хроническом облучении.

Защитные очки предназначены для защиты глаз при определенной длине волны, что необходимо учитывать при их выборе. В качестве светофильтров рекомендуется применять стекла по ГОСТ 9411-91 «Стекло оптическое цветное. Технические условия». Отдельные марки стекол приведены в табл. 11.3.

Длина волны, нм Марка стекла
УФС1, УФС5, ПС11, БСЗ, БС12
УФС2, УФС5, УФС6, БС4
ФС1, ФС6, СЗС7, СЗС8, СЗС9
СС16, ОС5, ПС11
СС1, СС2, СС4, СС5, ЖЗС9, ЖЗС12
УФС8, ФС1, СС1, СЗС5, ОС5, ИКС1, ПС11
ФС6, СЗС15, ИКСЗ, ИКС5, ИКСУ
ИКСЗ, ИКС5, ИКС7
СЗС5, СЗС16, НС14, ТСЗ
ИКС1, ИКСЗ, ИКС6, ИКС7
Примечание: УФС – ультрафиолетовое стекло; ФС – фиолетовое стекло; ИКС – инфракрасное стекло; ОС – оранжевое стекло; СЗС – сине-зеленое стекло; БС – бесцветное (ультрафиолетовое) стекло; ПС – пурпурное стекло; ЖЗС – желто-зеленое стекло; СС – синее стекло; НС – нейтральное стекло; ТС – темное стекло

В паспорте на очки должны быть указаны диапазоны длин волн, на которые рассчитаны эти очки, и оптическая плотность светофильтра.

Форма оправы защитных очков должна исключить возможность попадания излучения лазера внутрь очков через щели между оправой и лицом, а также обеспечивать широкое поле зрения. Целесообразно очки вмонтировать в маску или полумаску, защищающую лицо.

Защитные лицевые щитки применяются в тех случаях, когда лазерное излучение представляет опасность не только для глаз, но и для кожи лица.

При настройке резонаторов газовых лазеров, работающих в видимой области спектра, для защиты глаз следует применять защитные насадки (ЗН). Защитные насадки могут использоваться самостоятельно или в сочетании с оптическими устройствами, такими как диоптрийная трубка.

Одежда должна оставлять возможно меньше открытых частей тела. Она может быть обычной, предпочтительней халаты из непроницаемой ткани черного цвета. Руки защищают хлопчатобумажными перчатками.

Контроль лазерных излучений

Дозиметрический контроль лазерного излучения заключается в оценке тех характеристик лазерного излучения, которые определяют его способность вызывать биологические эффекты, и сопоставлении их с нормируемыми величинами.

Различают две формы дозиметрического контроля: предупредительный(оперативный) дозиметрический контроль и индивидуальный дозиметрический контроль.

Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерного излучения в точках на границе рабочей зоны, он проводится в соответствии с регламентом, утвержденным администрацией предприятия, но не реже одного раза в год в порядке текущего санитарного надзора, а также в следующих случаях:

При приемке в эксплуатацию новых лазерных изделий II-IV классов;

При внесении изменений в конструкцию действующих лазерных изделий;

При изменении конструкции средств коллективной защиты;

При проведении экспериментальных и наладочных работ;

При аттестации рабочих мест;

При организации новых рабочих мест.

Предупредительный дозиметрический контроль проводят при работе лазера в режиме максимальной отдачи мощности (энергии), определенной в паспорте на изделие и конкретными условиями эксплуатации.

Индивидуальный дозиметрический контроль заключается в измерении уровней энергетических параметров излучения, воздействующего на глаза (кожу) конкретного работающего в течение рабочего дня, он проводится при работе на открытых лазерных установках (экспериментальных стендах), а также в тех случаях, когда не исключено случайное воздействие лазерного излучения на глаза и кожу.

Для проведения измерений применяются переносные дозиметры лазерного излучения, отвечающие требованиям ГОСТ 24469-80 «Средства измерений параметров лазерного излучения. Общие технические требования» и позволяющие определять облученность Е е и энергетическую экспозицию Н е в широком спектральном, динамическом, временном и частотном диапазонах.

При измерениях энергетических параметров лазерного излучения предел допускаемой погрешности дозиметров не должен превышать 30%.

Промышленностью выпускается ряд приборов, позволяющих измерять энергетические характеристики лазерного излучения, см. приложение 10. В зависимости от типа приемника излучения приборы подразделяются на колориметрические (цвет), пироэлектрические (появление электрических зарядов при изменении температуры), болометрические (изменение электрического сопротивления термочувствительных элементов), пондеромоторные (эффект давления света на тело) и фотоэлектрические (изменение проводимости).

Контрольные вопросы к разделу 11:

1. Что такое – лазер, и с какими его свойствами связано широкое применение в различных отраслях деятельности?

2. Как подразделяют лазеры по типу активной среды?

3. Какие параметры лазерного излучения относят к энергетическим?

4. Какие параметры лазерного излучения относят к временны́м?

5. Какие виды лазерного излучения существуют?

6. Как подразделяют лазеры по степени опасности генерируемого излучения?

7. Какие опасные и вредные факторы могут возникнуть при работе лазера?

8. Чем определяется биологическое воздействие лазерных излучений на организм человека?

9. От каких факторов зависит степень тяжести повреждения организма человека при воздействии лазерного излучения?

10. Что может случиться от попадания прямого или отраженного пучка лазерного излучения на кожные покровы или роговицу глаза человека?

11. Зависят ли предельно допустимые уровни (ПДУ) лазерного излучения от длины его волны?

12. Какие требования предъявляются к помещениям для размещения лазеров?

13. Какие требования предъявляются к освещению помещений, в которых проводятся работы с лазерами?

14. Как должен быть ориентирован лазерный луч при его использовании?

17. Какие средства индивидуальной защиты применяются при работе с лазерным излучением?

15. Какое стекло можно использовать для защитных от лазерного излучения очков?

16. В каких случаях проводится предупредительный дозиметрический контроль лазерного излучения?

17. С какой целью проводится индивидуальный дозиметрический контроль лазерного излучения?



Понравилась статья? Поделиться с друзьями: