Защита резервуаров от статического и атмосферного электричества. Защита от атмосферного электричества. Защита от статического и атмосферного электричества

Атмосферное электричество проявляется в виде молний, элетростатической и электромагнитной индукции от грозового разряда. Все эти проявления опасны для жизни людей. Молния представляет собой разряд между разноименно заряженными облаками или между ними и землей, происходящий за тысячные доли секунды и сопровождается громом, вследствие быстрого расширения нагретого воздуха, и протеканием тока в десятки километров и величиной 200 кА и более. В канале молнии температура может достигать несколько десятков тысяч градусов.

Возможны поражения людей, как прямым попаданием молнии, так и вторичным проявлением грозового разряда, из-за удара молнии в возвышенные предметы (дерево, здание и т.д.). Возникающее большое шаговое напряжение на поверхности земли действует в радиусе 10 ¸ 15 м от места удара.

ОПРЕДЕЛЕНИЕ . Молниезащита представляет собой комплекс мероприятий, направлен­ных на предотвращение прямого удара молнии в здание (сооружения) или на устране­ние опасных последствий, связанных с прямым ударом.

Эффективным средством защиты от прямых ударов молнии служит молниеотвод - устройство, рассчитанное на непосредственный контакт с каналом мол­нии и отводящее её ток в землю. Различают два типа зон защиты – А и Б . Зона защиты типа А обладает вероятностью защиты 99,5% , а типа Б - 95% .

Зона защиты молниеотвода - пространство, внутри которого зда­ние или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения.

В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по кото­рому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.

В некоторых случаях функции опоры, молниеприемника и токоотво­да совмещаются, например, при использовании в качестве молниеотвода металлических труб или ферм.

Широкое распространение получили стержневые молниеотводы.

Молниеотводы разделяются на отдельно стоящие, обеспечивающие растекание тока молнии, минуя объект, и установленные на самом объек­те. При этом растекание тока происходит по контролируемым путям так, что обеспечивается низкая вероятность поражения людей (живот­ных), взрыва или пожара.

При установке молниеотводов на защищаемом объекте и невозможности использования в качестве токоотводов металлических конструкций здания токоотводы должны быть проложены к заземлителям по наружным стенам здания кратчайшими путями.

В качестве заземлителей молниезащиты допускается использовать все рекомендуемые заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ .

Ниже приводятся основные формулы для расчета зон защиты стержневых молниеотводов при их высоте, не превышающей 60 м .

Высотой h h o < h r o h x r x .

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис.18.2), вершина которого находится на высоте h o < h . На уровне земли зона защиты образует круг радиусом r o . Горизонтальное сечение зоны защиты на высоте h x представляет собой круг радиусом r x .

(18.1)

Габаритные размеры зоны Б :

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h x и r x может быть определена по формуле

(18.3)

Таким образом, высота одиночного молниеотвода должна быть выбрана такой, чтобы в образованную зону защиты, а практически это цилиндр с габаритными размерами r х и h х , вписывалось все защищаемое здание, как в плане, так и по фасаду.



ВЫВОДЫ. Таким образом, выполнение организационных и технических мероприятий является важным требованием обеспечения безопасности работ на электроустановках. Здесь важным является вопрос своевременного доведения мер безопасности и контроля их выполнения.

Последовательность действий при оказании первой помощи при поражении электрическим током должен знать каждый человек, поскольку в повседневной жизни мы постоянно сталкиваемся с электричеством.

При работе с электротехническими устройствами, в помещениях с электрооборудованием и т.д., необходимо систематически осуществлять контроль за тем, чтобы, оборудование было заземлено (занулено). Здесь являются исключением бытовые приборы, выполненные в корпусе диэлектрического материала.

Для защиты от атмосферного электричества все здания и сооружения должны содержать молниеотводы.

ВЫВОДЫ ПО РАЗДЕЛУ 3

При изучении раздела «Основы электроники, электрические измерения и электробезопасность» рассмотрены назначение и принцип работы современной элементной базы электронных устройств: полупроводниковых приборов, интегральных микросхем и микропроцессоров. Кроме того, рассмотрены устройство и принцип действия вторичных источников электроэнергии: выпрямителей, инверторов, конверторов и преобразователей частоты.

Рассмотренные устройства и принципы работы электроизмерительных приборов, а также способы и методы измерения электрических параметров, позволят эффективно развивать навыки практического использования теоретических знаний.

Знания правил техники безопасности, в том числе мероприятий, обеспечивающих защиту от поражения электрическим током и умение оказания первой помощи при поражении электрическим током, являются актуальными вопросами в жизни современного человека.

Ведущий преподаватель ст.преподаватель _________Хамула А.А.

«____»______________20__г.


Похожая информация.


  • Глава 1 управление безопасностью жизнедеятельности. Правовые и организационные основы
  • Предмет и содержание курса «Безопасность жизнедеятельности»
  • 1.2. Научный метод курса бжд и связь с другими науками
  • 1.3. Технический прогресс и новые проблемы безопасности жизнедеятельности. Проблемы технотронной цивилизации
  • 1.4. Роль безопасности труда в повышении производительности труда и влияние его на экономические показатели производства
  • 1.5. Экономические последствия и материальные затраты на охрану окружающей среды
  • 1.6. Правовые и нормативно-технические основы безопасности жизнедеятельности
  • 1.7. Организационные основы управления безопасностью жизнедеятельности
  • Государственный и общественный надзор по охране труда
  • 1.9. Планирование и финансирование мероприятий по безопасности жизнедеятельности
  • 1.10. Международное сотрудничество в области безопасности жизнедеятельности
  • Глава 2 основы физиологии труда и комфортные условия жизнедеятельности
  • 2.1. Факторы, определяющие условия обитания человека
  • Классификация основных форм человеческой деятельности
  • 2.3. Категорирование условий труда и работ
  • Показатели условий труда по трудовой нагрузке
  • Показатели условий труда по опасности
  • Показатели условий труда по вредности
  • 2.4. Обеспечение комфортных условий труда: микроклимат помещения
  • 2.5. Освещение производственных помещений. Искусственное и естественное освещение
  • Глава 3 производственный травматизм и профзаболевания
  • Производственный травматизм и профзаболевания: причины и способы снижения
  • 3.2. Учет и расследование несчастных случаев на производстве
  • 3.3. Размер вреда, подлежащего возмещению потерпевшему в результате трудового увечья
  • Глава 4 воздействие негативных факторов на человека и техносферу
  • 4.1. Вредные вещества и методы защиты
  • 4.2. Ионизирующие излучения
  • 4.3. Электромагнитные поля
  • 4.4. Электрический ток
  • 4.5. Защита от статического и атмосферного электричества
  • 4.6. Производственный шум
  • 4.7. Производственные вибрации
  • Глава 5 пожаровзрывобезопасность на производстве
  • Пожарная безопасность производств: физика и химия горения, классификация процессов горения, теории горения, показатели горючести веществ
  • Категорирование помещений и зданий по взрывопожарной и пожарной опасности
  • Категорирование пожаровзрывоопасности производственных помещений
  • 5.3. Классификация взрыво- и пожароопасных зон
  • Классификация пожароопасных зон
  • Классификация взрывоопасных зон
  • 5.4. Категории наружных установок по пожарной опасности
  • Категории наружных установок по пожарной опасности
  • 5.5. Выбор взрыво- и пожарозащищенного электрооборудования
  • Категории взрывоопасных смесей газов и паров с воздухом (гост 12.1.011-78 (1991))
  • Группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения
  • Уровни взрывозащиты электрооборудования
  • Выбор температурных классов электрооборудования
  • 5.6. Категорирование блоков по взрывоопасности
  • Категорирование технологических блоков
  • 5.7. Принцип выбора средств тушения пожаров. Автоматические средства тушения пожаров
  • 5.8. Способы оповещения о пожаре: извещатели и сигнализация
  • Глава 6 безопасность технологических процессов
  • 6.1. Безопасность технологических процессов: этапы создания технологических процессов, потенциальные опасности, требования и направления безопасности
  • 6.2. Технологический регламент и его содержание
  • 6.3. Роль автоматизации для обеспечения безопасности
  • 6.4. План локализации (ликвидации) аварийных ситуаций
  • Раздел 1. «Технология и аппаратурное оформление блока»;
  • 6.6. Сосуды, работающие под давлением
  • Группы сосудов, работающих под давлением
  • 6.7. Инженерно-технические средства защиты. Защитные устройства
  • 6.8. Индивидуальные средства защиты
  • Глава 7 организация экологического контроля, надзора и управления в российской федерации
  • Экологичность технологических процессов
  • Создание безотходных технологических процессов
  • 7.3. Экологический паспорт предприятия
  • 7.4. Экологическая экспертиза и контроль экологичности и безопасности предприятия
  • Глава 8 чрезвычайные ситуации
  • 8.1. Классификация чрезвычайных ситуаций
  • 8.2. Природные чрезвычайные ситуации
  • Инфекционные заболевания людей
  • 8.3. Чрезвычайные ситуации техногенного характера
  • 8.4. Чрезвычайные ситуации химического характера
  • 8.5. Чрезвычайные ситуации военного времени. Современные средства поражения
  • 8.6. Ядерное оружие: общая характеристика, поражающее действие
  • 8.7.Химическое оружие: общая характеристика, поражающее действие
  • Бактериологическое оружие: общая характеристика, поражающее действие
  • 8.9. Перспективные виды оружия массового поражения
  • Организация защиты населения и территории в чрезвычайных ситуациях. План мероприятий для предупреждения и ликвидации чрезвычайных ситуаций
  • Обеспечение устойчивости объектов при чрезвычайных ситуациях
  • Психологическая подготовка населения к чрезвычайным и экстремальным ситуациям
  • Организация оказания медицинской помощи при чрезвычайных ситуациях
  • Основные типы приборов для контроля требования безопасности жизнедеятельности
  • Законодательные и нормативно-правовые документы
  • 2.1. Общие вопросы охраны природы
  • 2.2. Трудовое законодательство
  • 2.3. Общепринятые государственные стандарты
  • 2.4. Санитарные и строительные нормы и правила
  • Рекомендуемая литература
  • 4.5. Защита от статического и атмосферного электричества

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

      в потоке и при разбрызгивании жидкости;

      в струе газа или пара;

      при соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

      предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

      уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

      снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

      отвод статического электричества, накапливающегося на людях;

      устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

      обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей.

    Виды ударов молнии:

      прямые удары молнии на объект;

      за счет распределения потенциалов (может поражаться соседний объект);

      за счет индуктивного эффекта (может поражаться третий объект, например, через почву).

    Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h– высота здания,n– коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в IIIклиматическом поясе. 40 - 60 раз может ударить молния летом,n= 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

      корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

      металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

      для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

      для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

      металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

      внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

      во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    "

    Возникновение заряда статического электричества

    В производственных условиях широко используются и получаются вещества, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества (СЭ). Электрические разряды в таких системах часто являются причиной взрывов и пожаров. Кроме того, статическое электричество является причиной снижения точности показаний электрических приборов и надёжности работы средств автоматики. Определённое негативное воздействие статическое электричество оказывает на человека, приводя, например, к рефлекторным телодвижениям при кратковременном (доли секунды) протекании электрического тока во время электрических разрядов. Это обстоятельство может вызвать травмирование персонала, например, при падении с высоты или попадании в опасную зону машин и механизмов.

    По современным представлениям статическое электричество возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твёрдых веществ. При этом на поверхности соприкосновения образуется двойной электрический слой, состоящий из расположенных определённым образом электрических зарядов противоположных знаков.

    Двойной электрический слой образуется в месте контакта поверхностей. При разделении материалов происходит механический разрыв зарядов двойного слоя, создаётся разность потенциалов (U, В) и заряды начинают перемещаться в точку начала разделения поверхностей веществ А (рис. 8). При достаточно большой величине U в зазоре разрыва поверхностей возникает газовый разряд. При перемещении зарядов по разделяемым поверхностям и газовому промежутку возникает соответственно ток омического сопротивления (I о, А) и ток газового разряда (ионизации) (I и, А). Если время разделения поверхностей будет меньше времени перемещения зарядов в точку А, то поверхности после разделения будут иметь остаточные электрические заряды, что и создаёт разность потенциалов, а вместе с нею и электростатическое поле. Такое явление называется электризацией. Электризация твёрдых тел на производстве возможна, например, при движении ремённых передач, транспортёрных лент, запылённых газов в трубопроводах, пневмотранспорте сыпучих материалов, дроблении, перемешивании и в др. ситуациях. Электризации подвержены также жидкости с низкой электропроводностью, например, нефтепродукты, движущиеся по трубопроводам или перемешивающиеся в ёмкостях, аппаратах.

    Рис. 8.

    I о - ток, обусловленный омической проводимостью разделяемых поверхностей; I и - ток ионизации в зазоре между разделяемыми поверхностями; А - точка начала разделения поверхностей

    Явление возникновения электрических зарядов при взаимном трении двух диэлектриков, полупроводников или металлов с различными физико-химическими свойствами называется трибоэлектризацией (от греч. tribos - трение).

    В производственных условиях электризация зависит от многих факторов и, прежде всего, от физико-химических свойств перерабатываемых (перемещаемых) материалов и характера технологического процесса.

    Так, например, степень электризации зависит от величины удельного электрического сопротивления материала (с, Ом·м). При с 1·10 6 Ом·м электризация практически не происходит. Вещества, имеющие с 1·10 8 Ом·м электризуются хорошо (полистирол, стекло, жидкие углеводороды, синтетические волокна, прорезиненные ткани и др.).

    На степень электризации влияет также относительная влажность воздуха и его температура, скорость движения жидкости и материала, степень дробления твёрдого материала и жидкости и др. факторы.

    Значительную опасность представляет атмосферное статическое электричество; в грозовых облаках накапливаетсянапряжение от 100 млн до 1млрд В (разность потенциалов между поверхностью земли и атмосферой при грозе), температура в молнии достигает значений 20 - 30 тыс °С , скорость молнии – порядка 100 000 км/с , а сила тока в ней – 180 000 А. Ежегодно на земном шаре бывает до 44 000 гроз, т.е. каждую секунду на небосклоне около 100 молний. В среднем на 1 км 2 поверзности земли приходится в год 2-4 грозовых разряда.

    Грозовые разряды, поражающие наземные объекты проявляются в виде:

    а) прямого удара молнии (непосредственный контакт молнии с объектом, сопровождающийся протеканием через него тока молнии)

    б) вторичных проявлений молнии – электрической индукции (наведение потенциалов на наземных предметах в результате изменений электрического поля грозового облака, что сопряжено с опасностью появления искрения между металлическими элементами конструкций и оборудования) и электормагнитной индукции (наведение потенциалов в незамкнутых металлических контурах в результате быстрых изменений тока молнии, создающее опасность искрения в местах сближения этих контуров)

    в) заноса высоких потенуиалов (перенесение наведенных молнией высоких электрических потенциалов в защищаемое здание по трубопроводам, электрическим кабелям и другим металлоконструкциям).

    Эффективным средством защиты от атмосферного электричества является молниезащита. Комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от взрывов, загораний и разрушений выполнятся по «Инструкци по устройству молниезащиты зданий и сооружений и промышленных коммуникаций» СО 153-34 И.122-2003.

    Молниезащита бывает трех категорий , что определяется назначением зданий, среднегодовой продолжительностью гроз, ожидаемым числом поражений зданий в год.

    II категория – защита промышленных зданий и сооружений с взрывоопасными зонами классов B-Iа, B-Iб, B-IIа и расположенных в местности со средней грозовой деятельностью 10 и более час в год. По этой же категории обеспечивается защита наружных технологических установок и открытых складов, относимых к классу B-Iг, вне зависимости от места расположения.

    III категория – защита многих других производственных сельскохозяйственных, жилых и общественных зданий, сооружений, складов, дымовых труб, водонапорных, силосных башен, пожарных вышек, ТВ вышек с учетом их пожароопасности, степени огнестойкости, ожидаемого количества поражений молнией, времени средней грозовой активности в районе и других факторов.

    Любой молниеотвод состоит из: опоры, молниеприемника, токоотвода (спуска) и заземлителя. Применяются2 типа молниеотводов: стержневой и тросовый. Стержневой по конструктивному исполнению бывает одиночный, двойной, многократный. Тросовый бывает одиночный и двойной.

    Совокупность явлений, результатом которых является образование, сбережение и разрядка свободных электрозарядов на поверхности диэлектриков или изолированных проводниках, называют статическим электричеством. Образующийся заряд может сохраняться и накапливать достаточно продолжительное время. Процесс получения любой поверхностью или телом определенного заряда (положительного или отрицательного) называется электризацией. Статические электрозаряды чаще всего образуются из-за трения друг о друга или о металл твердых материалов, не проводящих ток. Относительно земли напряжение во время статической электризации часто может достигать 100 тыс. вольт.

    Разряды статического электричества могут стать причиной возникновения сильных пожаров и взрывов, а также иметь негативное влияние на здоровье человека, как при непосредственном контакте, так и из-за опасного электрического поля образующегося вокруг заряженного тела. Выделяющейся энергии достаточно много для мгновенного для воспламенения пыле и газовоздушных смесей.

    Специалисты рекомендуют применять заземления, нейтрализаторы (индукционные, радиоактивные и высоковольтные), увлажнители воздуха, специальные экраны и антиэлектростатические вещества для эффективной защиты от статических зарядов. Сотрудникам, в качестве профилактики, выдают антистатическую спецодежду и токопроводящую обувь имеющую сопротивление подошвы до 108 Ом.

    Атмосферное электричество: молниезащита

    Наиболее часто атмосферное электричество концентрируется в кучевых (грозовых) облаках и разряжается через молнии, которые имеют мощное поражающее действие. Прямое их попадание в дом может полностью разрушить здание, убить людей, находящихся внутри или привести к сильному пожару или техногенным авариям.

    После того как Франклин объяснил всему миру природу молний человечество постоянно работает над усовершенствованием методов по молниезащите. В настоящее время на смену простым стальным или медным громоотводам с токоотводом и заземлением пришли инновационные активные молниеприемники. Они за счет ионизации воздуха вокруг себя самостоятельно притягивают к себе разряды молний. Современная система молниезащиты объекта включает защиту от прямых ударов молнии и вторичных ее проявлений.

    Защита от статического электричества и молниезащита

    Для предотвращения неприятных последствий от образования статических зарядов и молний необходимо при проектировании и эксплуатации объектов осуществлять комплекс мер, направленных на их защиту от статического электричества и молниезащиту .

    Основные здания и сооружения не принимаются в эксплуатацию без защиты от статического электричества и молниезащиты . Промышленные здания и помещения, оборудование и приборы, различные коммуникации в соответствии с их классификацией по ПУЭ должны иметь молниезащиту І, ІІ или ІІІ категории, а также защиту от статических разрядов для взрыво- и пожароопасных помещений, зон открытых установок, имеющие класс B-I, B-I6, В-II и B-IIa.

    Защита от статического электричества обеспечивается благодаря таким мероприятиям, как:

    • проверка исправности и безотказности работы и непосредственного наличия заземлений, систем отвода зарядов и нейтрализации;
    • очистка газвоздушных смесей от взвешенных примесей;
    • четкое выполнение технологических инструкций (недопущение разбрызгивания, дробления или распыления материалов, увеличения их скорости движения и т.п.)
    • металлическое и неметаллическое оборудование в одном помещении должны быть в одной электроцепи, которая соединяется с контуром заземления минимум в 2 точках;
    • подача трапа к самолету, открытие автоцистерн и т.п. мероприятия проводится только после присоединения к ним заземления;
    • используемые резиновые шланги для налива жидких веществ оснащаются проволокой и наконечниками из меди.

    Элементы молниезащиты должны регулярно проверяться и по необходимости ремонтироваться. Специалисты рекомендуют проводить проверку:

    • надежности связи между токоведущими частями молниезащиты,
    • наличия механических, коррозионных повреждений частей системы защиты;
    • сопротивления всех заземлителей.


    Понравилась статья? Поделиться с друзьями: