Организационный метод защиты от электрического тока. Меры защиты от поражения электрическим током. Индивидуальные средства защиты от поражения электрическим током. Знаки и плакаты по электробезопасности. Индивидуальные средства защиты

Электрический ток - это четко направленное движение электрически заряженных частиц под непосредственным воздействием электрического поля. Более подробная информация представлена ниже.

Электричество

Явление электрического тока можно наблюдать в следующих ситуациях:

  • при непосредственном нагреве проводников;
  • при изменении их химического состава;
  • при образовании магнитного поля (это явление происходит у всех проводников без исключения).

Электричество является незаменимым элементом в наше время. Без него не может функционировать ни одно предприятие. Однако важно знать, что наряду с полезными свойствами ток может принести вред человеческому здоровью и даже жизнедеятельности. Конечно, это вовсе не означает, что людям стоит вообще отказаться от электричества. Но каждому из нас надо быть осторожнее. Для сохранения своей жизни и здоровья следует соблюдать некоторые меры электрическим током. Об этом мы сейчас и поговорим.

Важно заметить, что защита всего рабочего коллектива в большей мере зависит от положения эксплуатации, а именно от таких факторов как: температура, влажность, запыление здания и т.д.

Печальная статистика

К сожалению, человек очень часто пренебрегает простыми правилами безопасности. И печальная статистика гласит, что в большинстве случаев смерть в результате удара тока настигает работников, которые лучше осведомлены в обращении с электричеством.

Люди не всегда выполняют правила, даже зная их. Что же заставляет работников подвергать себя такой опасности на предприятии? Возможно, это происходит из-за того, что человек хочет сэкономить время. Иногда условия труда заставляют работника предприятия подвергать себя такой опасности. В таких ситуациях необходимо моментально обращаться в соответствующие организации, которые должны быть любых на предприятиях, чтобы избежать летального исхода.

Какой ток несет наибольшую угрозу для человеческой жизни?

Существует три группы мощи электронапряжения. Они по-разному влияют на человеческую жизнедеятельность. Определенный уровень напряжения может нанести незначительный вред человеку и даже убить его. Уровни силы напряжения перечислены ниже:

  • пороговый ток (ощутимый). Под его воздействием человек может ощущать незначительные покалывания. Наблюдается дрожание рук;
  • пороговый (неотпускающий), под влиянием которого, работник физически не может преодолеть сокращение мышц. Он не в состоянии разжать руку и отпустить непосредственный источник напряжения;
  • пороговый фибриляционный. Его воздействие приводит к остановке сердца человека, вызывая сокращение сердечных мышц.

Для человеческого организма не несет никакой угрозы переменный 0,6-1,5 мА и постоянный 5-7 мА ток. Однако переменный 10-15мА и постоянный 50-80мА несут некоторую угрозу для жизни человека, но не смертельную.

Необходимые способы защиты

Существует достаточное количество средств и способов, чтобы защитить человека от поражения током. И об этом должен знать каждый гражданин, который пользуется электричеством. Особенно эти навыки крайне необходимы работникам различных предприятий. Ведь именно они чаще всего подвергаются опасности. Ситуации с ударом человека током довольно распространены на шахтах, различных заводах и т. д. Поэтому очень важно быть предельно осторожным, соблюдать все рекомендации, правила и обязанности при выполнении своей работы.

При создании качественной системы безопасности должно соблюдаться одно очень важное правило. А заключается оно в том, что опасные части, пропускающие ток, необходимо делать недоступными для человека.

Что касается самих защитных мер от поражения электричеством, то, как правило, выделяют:

  • Использование изолирующих накладок, допустимо и использование двойной изоляции.
  • Недоступность токоведущих частей.
  • Применение небольшого напряжения (в помещениях с повышенной опасностью-от 42В, а в помещениях особой опасности-от 12В).
  • Защитное заземление оборудования.
  • Использование специальных защитных средств.
  • Защитное зануление оборудования.

Твёрдая и воздушная изоляция

Как же обеспечить защиту? Использование твердой изоляции помогает предотвратить прикосновение к проводнику электричества.

Есть еще один вариант. Речь идет о воздушной изоляции. Вот только использование ее одной будет недостаточно. Ведь необходима преграда, которая ограничит доступ посторонних лиц. Для этого рекомендуем применять различные кодовые ключи и запорные приспособления.

В целом выделяют две категории средств защиты от поражения электрическим током - индивидуальные и коллективные. Это еще не все. Их еще разделяют на дополнительные электрозащитные средства и основные, применение которых является обязательным.

Способы предосторожности

Основные меры защиты от поражения электрическим током должны быть направлены на надежное изолирование в течение достаточно длительного времени. Они в себя включают:

  • штанги (изолирующие);
  • указатели напряжения;
  • лестницы (изолирующие).

Некоторые способы защиты применяются дополнительно. Но использовать их можно лишь в комплексе с основными. В противном случае безопасность не будет обеспечена в полной мере. Итак, к данным способам защиты относятся:

  • Знаки и плакаты по электробезопасности.
  • Переносное заземление.
  • Подставки и накладки (изолирующие).
  • Диэлектрические перчатки (в таких перчатках возможна работа с напряжением до 1000В).
  • Изолирующие подставки.
  • Диэлектрические галоши.
  • Диэлектрические колпаки и прокладки.

Как уже было сказано выше, существуют и индивидуальные средства защиты от поражения электрическим током (сокращенно СИЗ), к которым относятся: приспособления для защиты головы (каски, шлемы и т.д.), защитные приспособления для глаз и лица (различные маски, очки и т.д.), перчатки и пр. Это еще не все. Существуют также технические меры защиты от поражения электрическим током (сокращенно ТСЗ).

Термины

Среди нас мало профессионалов. Поэтому так важно разобраться в определенных терминах. Вы должны четко понимать все правила и нормы чтобы в дальнейшем избежать ужасных последствий. Предупрежден - значит вооружен! Эта поговорка никогда не теряет актуальности.

Итак, защитное заземление - это электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могу оказаться непосредственно под напряжением.

Запоминаем еще один термин. Защитное зануление - это электрическое соединение открытых проводящих частей электроустановки, которые могут оказаться под напряжением по причине замыкания.

А что такое уравнивание потенциалов? Это соединение частей, проводящих ток для равенства их потенциалов. Данный термин часто используется электриками.

Выравнивание потенциалов - это непосредственно снижение разности потенциалов на поверхности, используя защитные проводники, установленные в земле и подсоединенные к заземляющему устройству.

Под подразумевается использование автоматических установок, целью которых является автоматическое выключение питания в целях безопасности. Надеемся, что вы запомнили эти термины.

Автоматические выключатели

Сейчас пойдет речь о современном виде технической меры защиты от поражения электрическим током. Это автоматические выключатели ВА. Они применяются для проведения тока. При коротких замыканиях и сильных перепадах напряжения происходит его автоматическое отключение. Эти приборы гарантируют безопасность в использовании и долгосрочную работу. Автоматический выключатель ВА чаще всего устанавливается на предприятиях.

Оказание 1-й медпомощи при непосредственном поражении током

Безусловно, важно создать все условия для того, чтобы несчастных случаев не происходило. Каждый работник должен неукоснительно соблюдать все меры осторожности и правила безопасности. Однако несчастные случаи все-таки происходят. Немаловажной задачей становится помочь пострадавшим до приезда скорой помощи. Запомните: здесь важна каждая секунда. Помощь, предоставленная пострадавшему в течение первых минут после поражения, в 90% спасает жизнь. В медуходе за пострадавшим при поражении выделяют два основных этапа:

  1. Освобождение пострадавшего от непосредственного действия электрического тока.
  2. Оказание первой необходимой медицинской помощи пострадавшему.

Очень важно наличие знаков и плакатов по электробезопасности. Ведь они могут спасти кому-то жизнь!

Чтобы освободить пострадавшего от воздействия на него напряжения, необходимо отключить это напряжение или убрать источник электрического тока подальше от человека. Тот, кто оказывает первую помощь, должен так же соблюдать все меры предосторожности, чтобы не усугубить ситуацию.

Пораженный током человек остался в сознании? Тогда его стоит оставить в покое до приезда наряда скорой. Если же он потерял сознание, но есть признаки дыхания, то необходимо положить и обогреть пострадавшего, а затем постараться привести его в чувства. При отсутствии каких-либо признаков жизни необходимо сделать массаж сердца в комплексе с искусственным дыханием.

В данной статье будут приведены примеры тех способов и методов защиты, благодаря которым возможно значительно обезопасить себя и других при выполнении электротехнических работ, тем самым снизив до минимума вероятность несчастного случая.

Применение защитных ограждений

Прикосновение человека к неизолированной токоведущей части, находящейся под напряжением, является опасным - это факт. Даже зная о наличии напряжения в тех или иных местах, существует вероятность случайного прикосновения.

Во избежание подобных случаев для обеспечения электробезопасности рабочего персонала принято делать защитные ограждения вокруг опасных зон (систем, оборудования, частей и т.д.).

Использование защитных блокировок

Блокировки, пожалуй, больше относятся к электротехнической защите от случайного поражения человека электрическим током или от внезапного включения оборудования, что также может повлечь за собой несчастный случай.

При их установке учитываются те случаи, которые могут произойти в случае ошибочного и неправильного поведения людей, работающих либо обслуживающих электрические системы и устройства.

При срабатывании блокировки происходит принудительное отключение и обесточивание электрооборудования с целью предотвращения аварийной ситуации.

Заземлители переносные

Переносные заземлители представляют собой временные средства защиты. Они применяются для обеспечения дополнительной безопасности (защиты рабочего персонала от поражения электрическим током) при работах на отключённых участках электрических систем, оборудования, устройств и т.д. В том случае, когда вдруг появится напряжение на данных участках, где ещё работают люди, эти переносные заземлители (проводники, касающиеся земли) направят электроэнергию в землю.

Использование защитной изоляции

Ещё одним важным способом технической защиты от поражения электрическим током является использования защитной изоляции на своём рабочем месте.

Изолирование рабочего места предполагает некую организацию мероприятий, направленную на предотвращение появления электрической цепи «человек-земля».

Основной задачей этого метода является увеличение сопротивления (переходного) по данной электроцепи.

Этот вариант предполагает использование резиновых ковров, изоляции токоведущих частей электрооборудования в наиболее электрически опасных местах и т.д.

Технические меры по защите от поражения электрическим током

Технические меры по защите можно разделить на 2 основные группы.

К первой можно отнести разделение электросетей, использование невысоких напряжений, своевременный контроль над изоляцией, защитное заземление, усиленную изоляцию (использование двойной изоляции) и прочее. Использование подобных мер защиты дает человеку максимальную защиту от поражения электрическим током.

Ко второй группе отнесём защитное отключение и зануление:

  1. Разделение электросетей. Для разделения электросети используют трансформаторы. Они позволяют разбить общую цепь на отдельные цепи и участки (электрически не связанные между собой). В электросетях, где применяется изолированная нейтраль, это повышает изоляционное сопротивление и понижает ёмкость относительно земли, сравнивая с электросетью в целом. При разделении электросетей недопустимо применение автотрансформаторов.
  2. Использование невысоких напряжений электропитания. В соответствии с ГОСТом невысоким напряжением можно считать напряжение до 42 В. Оно используется в целях повышения безопасности от поражения электричеством. Невысокие напряжения обычно получают при помощи трансформаторов (понижающих).
  3. Изоляция, её контроль, обнаружение повреждений, профилактика.
  4. Контроль над состоянием изоляционного покрытия осуществляется путём периодического измерения её сопротивления. Целью данной процедуры является обнаружение дефективных мест и своевременное предупреждение коротких замыканий на землю.
  5. Защитное заземление. Защитным заземлением называется преднамеренное электрическое соединение с землёй (либо её эквивалентом). Задачей заземления является понижение значений напряжения относительно самой земли. Оно используется в электросетях с напряжениями до 1000 в (с изолированной нейтралью). Защитное заземление предполагает перераспределение падений напряжения на участках электрической цепи: «корпус – земля» и «фаза – земля».
  6. Использование двойной изоляции. Под двойной изоляцией понимается объединение рабочей и дополнительной изоляции вместе. Это значительно повышает общую надёжность защиты от поражения током. Электрическое оборудование, делаемое с такой изоляцией, как правило, маркируется особыми знаками. Эффективно себя проявляет двойная изоляция в различном электрическом инструменте.
  7. Применение защитного отключения. Защитное отключение является довольно эффективной мерой защиты от поражения электрическим током. Оно представляет собой быстродействующую защиту, что обеспечивает преждевременное автоматическое срабатывание и отключает электрооборудование.
  8. Зануление. Защитное зануление - это преднамеренное (специальное) электрическое соединение с нулевым проводником нетоковедущих металлических частей, которые потенциально могут быть под напряжением (при неисправностях, пробоях изоляции и т.д.). Оно используется в электросетях с напряжением до 1000 В (с глухо заземлённой нейтралью). Основной задачей такого зануления является снижение вероятности поражения электрическим током человека при аварийном пробое электрооборудования на корпус по одной из фаз электросети.

Безопасность при работе с электроустановками обеспечивается применением различных технических и организационных мер. Они регламентированы действующими правилами устройства электроустановок (ПУЭ). Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные, на средства, предупреждающие прикосновение людей к элементам сети, находящимся под напряжением, и средства, которые обеспечивают безопасность, если прикосновение все-таки произошло.

Основные способы и средства электрозащиты:

Изоляция токопроводящих частей и ее непрерывный кон-троль;

Установка оградительных устройств;

Предупредительная сигнализация и блокировка;

Использование знаков безопасности и предупреждающих плакатов;

Использование малых напряжений;

Электрическое разделение сетей;

Защитное заземление;

Выравнивание потенциалов;

Зануление;

Защитное отключение;

Средства индивидуальной электрозащиты.

Изоляция токопроводящих частей - одна из основных мер электробезопасности. Согласно ПУЭ сопротивление изоляции токопроводящих частей электрических установок относительно земли должно быть не менее 0,5- 10 МОм. Различают рабочую, двойную и усиленную рабочую изоляцию.

Рабочей называется изоляция, обеспечивающая нор-мальную работу электрической установки и защиту персонала от поражения электрическим током. Двойная изоляция, со-стоящая из рабочей и дополнительной, используется в тех слу-чаях, когда требуется обеспечить повышенную электробезопас-ность оборудования (например, ручного электроинструмента, бытовых электрических приборов и т.д.).

Сопротивление двой-ной изоляции должно быть не менее 5 МОм, что в 10 раз пре-вышает сопротивление обычной рабочей. В ряде случаев рабо-чую изоляцию выполняют настолько надежно, что ее электросо-противление составляет не менее 5 МОм и потому она обеспечивает такую же защиту от поражения током, как и двой-ная. Такую изоляцию называют усиленной рабочей изоляцией.

При замыканиях тока на конструктивные части электрооборудования (замыкание на корпус) на них появляются напряже-ния, достаточные для поражения людей или возникновения по-жара. Осуществить защиту от поражения электрическим током и возгорания в этом случае можно тремя путями: защитным за-землением, занулением и защитным отключением.

Защитное заземление - это преднамеренное соединение с землей или ее эквивалентом металлических нетоковедущих час-тей электрооборудования, которые в обычном состоянии не на-ходятся под напряжением, но могут оказаться под ним при слу-чайном соединении их с токоведущими частями.


Рассмотрим схему действия защитного заземления на приме-ре трехфазной сети с изолированной нейтралью (рис. 9.2).

Рисунок 9.2 - Схема работы защитного заземления:

R из - сопротивление изоляции каждой из фаз относительно земли

Если человек прикоснется к заземленной электроустановке, находящейся под напряжением, то он попадет под напряжение прикосновения, определяемое по формуле

U пр =a 1 I з R з , (9.10)

где a 1 - коэффициент напряжения прикосновения или просто коэффи-циент прикосновения (a 1 < 1 и зависит от вида заземлителя);

I з - ток замыкания, А;

R з - сопротивление защитного заземления, Ом.

Ток, проходящий через тело человека, попавшего под на-пряжение прикосновения (, А), составит

где R с - сопротивление растеканию тока в земле, зависящее от удельного со-противления земли и сопротивления подошвы обуви человека, Ом.

Если человек находится в условиях высокой влажности (R c ® 0), предыдущую формулу можно упростить

Рассчитаем для случая, если I 3 = 4 А, R з = 4 Ом и a пр = 0,4 (контурный заземлитель):

Этот ток безопасен для человека, так как не превышает значения неотпускающего тока (10 мА).

Таким образом, принцип действия защитного заземления за-ключается в снижении до безопасных значений напряжений прикосновения (и напряжения шага), вызванных замыканием на корпус.

Защитному заземлению (занулению) подвергают металличе-ские части электроустановок и оборудования, доступные для прикосновения человека и не имеющие других видов защиты, например, корпуса электрических машин, трансформаторов, светильников, каркасы распределительных щитов, металличе-ские трубы и оболочки электропроводок, а также металлические корпуса переносных электроприемников. Обязательно заземляют электроустановки, работающие под напряжением 380 В и выше переменного тока и питающиеся от источника постоянного тока с напряжением 440 В и выше. Кроме того, в помещениях повышенной и особой опасности за-земляют установки с напряжением от 42 до 380 В переменного тока и от 110 до 440 В постоянного тока.

Заземляющее устройство - это совокупность заземлителя - металлических проводников, соприкасающихся с землей, и зазем-ляющих проводников, соединяющих заземляемые части электро-установки с заземлителем. В зависимости от взаимного располо-жения заземлителей и заземляемого оборудования различают вы-носные (рис.9.3) и контурные (рис.9.4) заземляющие устройства. Первые из них характеризуются тем, что заземлители вынесены за пределы пло-щадки, на которой размещено заземляемое оборудование, или со-средоточены на некоторой части этой площадки.

Контурное заземляющее устройство, заземлители которого располагаются по контуру (периметру) вокруг заземляемого оборудования на небольшом расстоянии друг от друга (несколько метров), обеспечивает лучшую степень защиты, чем предыдущее.

Рисунок 9.3 - Схема выносного заземления:

1 - заземлители; 2 - заземляющие проводники; 3 - заземляемое оборудование; 4 - производственные здания

Рисунок 9.4 - Схема контурного заземления:

1 - заземлители; 2 - заземляющие проводники; 3 - заземляемое оборудование; 4 - производственное здание

Заземлители бывают искусственные , которые используются только для целей заземления, и естественные , в качестве кото-рых используют находящиеся в земле трубопроводы (за исклю-чением трубопроводов горючих жидкостей или газов), метал-лические конструкции, арматуру железобетонных конструкций, свинцовые оболочки кабелей и др. Искусственные заземлители изготавливают из стальных труб, уголков, прутков или полосо-вой ткани.

Требования к сопротивлению защитного заземления регла-ментируются ПУЭ. В любое время года это сопротивление не должно превышать:

4 Ом - в установках, работающих под напряжением до 1000 В; если мощность источника тока составляет 100 кВ×А и менее, то сопротивление заземляющего устройства мо-жет достигать 10 Ом;

0,5 Ом - в установках, работающих под напряжением вы-ше 1000 В с эффективно заземленной нейтралью. Наибольшее сопротивление заземляющего устройства (R ,Ом) не должно быть более 250/I 3 (но не более 10 Ом) в установках напряжением выше 1000 В с изолированной нейтралью. При использовании заземляющего устройства одновременно для ус-тановок напряжением до 1000 В, R не должно быть более 125/I 3 (но не более 4 или 10 Ом соответственно). В этих формулах I 3 - ток замыкания на землю, А.

Защитное зануление предназначено для защиты в трехфазных четырехпроводных сетях с глухозаземленной нейтралью, рабо-тающих под напряжением до 1000 В, так как в этих сетях ис-пользование защитного заземления неэффективно. Обычно это сети 220/127, 380/220 и 660/380 В.

Рассмотрим действие защитного зануления подробнее. Пусть имеется трехфазная трехпроводная сеть, работающая под напря-жением до 1000 В с заземленной нейтралью (рис. 9.5).

Рисунок 9.5 - Схема трехфазной трехпроводной сети до 1000 В с заземленной нейтралью

Если в такой схеме одна из фаз будет замкнута на корпус электропроводки (показана на схеме молниеобразной стрелкой), то величина тока (I 3 , А), протекающего в сети, определится из следующей зависимости

где U Ф - фазное напряжение, В;

R 0 - сопротивление заземления нейтрали, Ом;

R 3 - сопротивление корпуса электроустановки, Ом.

При этом на корпусе электроустановки возникает напряже-ние относительно земли (U к ), определяемое следующей форму-лой

Рассчитаем величину тока короткого замыкания (I 3 , А) для значений U ф = 220В и R 0 = R 3 = 4 Ом:

Ток короткого замыкания I 3 может оказаться недостаточным для срабатывания защиты, и электроустановка может не отклю-читься. Корпус электроустановки находится под опасным на-пряжением. Если человек случайно прикоснется к корпусу элек-троустановки, находящейся под этим напряжением, то ток, про-текающий через тело человека, составит

где a пр - коэффициент напряжения прикосновения.

Если a пр = 1 и U к = 110 В, то I чел = 110/1000 = 0,11 А = 110 мА. Этот ток превышает значение фибрилляционного, поэтому яв-ляется смертельно опасным. Таким образом, защитное заземле-ние в этом случае не обеспечивает надежной защиты человека, поэтому используют не заземление, а зануление.

Занулением называют способ защиты от поражения током автоматическим отключением поврежденного участка сети и одновременно снижением напряжения на корпусах оборудования на время, пока не сработает отключающий аппарат (плавкие предо-хранители, автоматы и др.). Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетокопроводяших частей, которые могут оказаться под напря-жением (рис. 9.6).

Проводник (1), который соединяет зануляемые части элек-троустановки с глухозаземленной нейтральной точкой обмотки трансформатора, называют нулевым защитным. Назначение этого проводника заключается в создании для тока короткого замыкания электрической цепи с малым электросопротивлением (цепь обозначена на рисунке цифрами I - II- III - IV - V), чтобы данный ток был достаточен для быстрого отключения по-вреждения от сети. Это достигается срабатыванием элемента за-щиты сети от тока короткого замыкания (на рисунке этот эле-мент обозначен цифрой 2).

Цепь зануления I - II - III - IV - V имеет очень малое электрическое сопротивление (доли Ом). Ток короткого замы-кания, возникающий при замыкании на корпус и проходящий по цепи зануления, достигает большого значения (нескольких сотен ампер), что обеспечивает быстрое и надежное срабатыва-ние элементов защиты.

Рисунок 9.6 - Схема работы зануления:

1 - нулевой защитный проводник; 2 - срабатываемый элемент защиты; 3 - повторное заземление нулевого провода

Для устранения опасности обрыва нулевого провода устраи-вают его повторное многократное рабочее заземление через ка-ждые 250 м.

Основное требование безопасности к занулению: оно должно обеспечивать надежное и быстрое срабатывание защиты. Для этого необходимо выполнение следующего условия I кз ³ k I ном, где I ном - номинальное значение тока, при котором происходит сраба-тывание элемента защиты; k - коэффициент, характеризующий кратность тока короткого за-мыкания относительно номинального значения тока, при ко-тором срабатывает элемент защиты.

Время срабатывания элементов защиты зависит от силы то-ка. Так, для плавких предохранителей и тепловых автоматов при k = 10 время срабатывания предохранителя составляет 0,1 с, а при k = 3 - 0,2 с. Электромагнитный автоматический выключа-тель обесточивает сеть за 0,01 с. Согласно требованиям ПУЭ в помещениях с нормальными условиями k должен находиться в пределах 1,2- 3, а во взрывоопасных помещениях k = 1,4- 6.

Еще одна система защиты - защитное отключение - это защита от поражения электрическим током в электроустановках, работающих под напряжением до 1000 В, автоматическим отключением всех фаз аварийного участка сети за время, допустимое по условиям безопасности для человека.

Основная характеристика этой системы - быстродействие, оно не должно превышать 0,2 с. Принцип защиты основан на ограничении времени протекания опасного тока через тело человека. Существуют различные схемы защитного отключения, одна из них, основанная на использовании реле напряжения, представлена на рисунке 9.7.

В передвижных установках напряжением до 1000 В;

Для отключения электрооборудования, удаленного от ис-точника питания, как дополнение к занулению;

В электрифицированном инструменте как дополнение к защитному заземлению или занулению;

В скальных и мерзлых фунтах при невозможности выпол-нять необходимое заземление.

Рисунок 9.7 - Схема защитного отключения:

1 - корпус электроустановки; 2 - автоматический выключатель; 3 - отключающая катушка; 4 - сердечник катушки; 5 - реле максимального напряжения; R 3 - сопротивление защитного заземления; I 3 - ток замыкания; I р - ток, протекающий через реле; R в - сопротивление вспомогательного заземления

К организационным мероприятиям, обеспечи-вающим безопасную эксплуатацию электроустановок отно-сятся оформление соответствующих работ нарядом или распо-ряжением, допуск к работе, надзор за проведением работ, стро-гое соблюдение режима труда и отдыха, переходов на другие работы и окончания работ.

Нарядом для проведения работы в электроустановках назы-вают составленное на специальном бланке задание на ее безопасное производство, определяющее содержание, место, время начала и окончания работы, необходимые меры безопасности, состав бригад и лиц, ответственных за безопасность выполнения работ. Распоряжением называют то же задание на безопасное производство работы, но с указанием содержания работы, места, времени и лиц, которым поручено ее выполнение.

Все работы на токопроводящих частях электроустановок под напряжением и со снятием напряжения выполняют по наряду, кроме кратковременных работ (продолжительностью не более 1 ч), требующих участия не более трех человек. Эти работы вы-полняют по распоряжению.

К организационным мероприятиям также относятся обуче-ние персонала правильным приемам работы с присвоением ра-ботникам, обслуживающим электроустановки, соответствующих квалификационных групп.

Важным вопросом электробезопасности является защита от удара молний, или молниезащита . Молниезащита - это система защитных устройств и меро-приятий, применяемых в промышленных и гражданских соору-жениях для защиты их от аварии, пожаров при попадании в них молнии. Молния - особый вид прохождения электрического тока через огромные воздушные промежутки, источник которого - атмосферный заряд, накопленный грозовым облаком.

Различают три типа воздействия тока молнии: прямой удар, вторичное воздействие заряда молнии и занос высоких потен-циалов (напряжения) в здания. При прямом разряде молнии в здание или сооружение может произойти его механическое или термическое разрушение. Последнее проявляется в виде плавле-ния или даже испарения материалов конструкции.

Вторичное воздействие разряда молнии заключается в наведении в замкну-тых токопроводящих контурах (трубопроводах, электропровод-ках и др.), расположенных внутри зданий, электрических токов. Эти токи могут вызвать искрение или нагрев металлических конструкций, что может стать причиной возникновения пожара или взрыва в помещениях, где используются горючие или взры-воопасные вещества. К этим же последствиям может привести и занос высоких потенциалов (напряжения) по любым металло-конструкциям, находящимся внутри зданий и сооружений под действием молнии.

Для защиты от действия молнии устраивают молниеот-воды (громоотводы). Это заземленные металлические конст-рукции, которые воспринимают удар молнии и отводят ее ток в землю. Различают стержневые и тросовые молниеотводы. Их защитное действие основано на свойстве молний поражать наибо-лее высокие и хорошо заземленные металлические конструкции.

Молниеотводы характеризуются зоной защиты, которая оп-ределяется как часть пространства, защищенного от удара мол-нии с определенной степенью надежности. В зависимости от степени надежности зоны защиты могут быть двух типов — А и Б. Тип зоны защиты выбирают в зависимости от ожидаемого количества поражений молнией зданий и сооружений в год (N ). Если величина N > 1, то принимают зону защиты типа А (сте-пень надежности защиты в этом случае составляет не менее 99,5%). При N £ 1 принимают зону защиты типа В (степень на-дежности этой защиты - 95% и выше).

6.4. Меры защиты от поражения электрическим током

Электробезопасность обеспечивается конструкцией электроустановок, техническими способами и средствами защиты, организационными и техническими мероприятиями.

Конструкция электроустановок должна соответствовать условиям их эксплуатации и обеспечивать защиту персонала от соприкосновения с токоведущими и движущимися частями , а оборудования - от попадания внутрь посторонних твердых тел и воды.

Способы и средства обеспечения электробезопасности : защитное заземление, зануление, защитное отключение, выравнивание потенциалов, малое напряжение, изоляция токоведущих частей, электрическое разделение сетей, оградительные устройства, блокировки, предупредительная сигнализация, знаки безопасности, предупредительные плакаты, электрозащитные средства.

Защитное заземление - это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковеду щих частей , которые могут оказаться под напряжением в результате повреждения изоляции электроустановки.

Принцип действия защитного заземления : снижение до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус. При заземлении корпуса происходит замыкание на землю и прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит в землю через тело человека (рис.6.5). Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток через человека (I h) не опасен.

Область применения защитного заземления - трехфазные сети напряже нием до 1 кВ с изолированной нейтралью и сети напряжением выше 1 кВ с любым режимом нейтрали.

Сопротивление заземляющего устройства, используемого для заземления электрооборудования в электроустановках напряжением до 1 кВс изолированной нейтралью должно быть не более 4 Ом.

При мощности генераторов и трансформаторов 100 кВи менее, заземляющие устройства могут иметь сопротивление не более 10 Ом.

Заземляющее устройство в электроустановках напряжением выше 1 кВс глухозаземленной нейтралью должно иметь сопротивление не более 0,5 Ом, а в электроустановках с изолированной нейтралью - не более 10 Ом.

Расчет защитного заземления заключается в определении параметров вертикальных и горизонтальных элементов заземления при условии непревышения допустимого значения сопротивления заземляющего устройства. Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, соединяющих заземляемое оборудование с заземлителем.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

Задача зануления : устранение опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки , оказавшимся под напряжением вследствие замыкания на корпус . Решается задача быстрым отключением поврежденной электроустановки от сети (рис.6.6).

Принцип действия зануления заключается в превращении замыкания на корпус в однофазное короткое замыкание (между фазным и нулевым проводами) с целью вызвать большой ток, обеспечивающий срабатывание защиты, и тем самым автоматически отключить поврежденную ус тановку от питающей сети.

Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты . Такой защитой могут быть плавкие предохранители, магнитные пускатели со встроенной тепловой защитой, контакторы в сочетании с тепловым реле, автоматы, осуществляющие защиту одновременно от токов короткого замыкания и от перегрузки.

Занулеиие применяют в трехфазных четырехпроводных сетях напряжением до 1 кВ с глухозаземленной нейтралью.

Защитное заземление или зануление электроустановок является обя зательным в помещениях без повышенной опасности поражения током при номинальном напряжении 380 В и выше переменного тока, а также 440 В и выше постоянного тока .

В помещениях с повышенной опасностью и особо опасных необходимо заземлять или занулять установки при поминальном напряжении 42 Ви выше переменного тока, а также 110 В и выше постоянного тока. Во взрывоопасных помещениях заземление или зануление установок обязательно независимо от напряжения сети.

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения током. При применении этого вида защиты безопасность обеспечивается быстродействующим (не более 0,2 с) отключением аварийного участка или всей сети при однофазном замыкании на землю или на элементы электрооборудования, нормально изолированные от земли, а также при прикосновении человека к частям, находящимся под напряжением.

Схемы и конструкции устройств защитного отключения .

Схема защитно го отключения, срабатывающего при появлении напряжения на корпусе относительно земли (рис. 6.7). В схемах этого типа датчиком служит реле напряжения, включенное между корпусом и вспомогательным заземлителем.

Выравнивание потенциала - метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием. В производственном помещении корпуса электрооборудования и производственного оборудования в той или иной степени связаны между собой. При замыкании на корпус в каком-либо из электроприемников все металлические части получают близкое по величине напряжение относительно земли. В результате напряжение между корпусом электроприемника и полом уменьшается, происходит выравнивание потенциала по всей площади помещения и человек, находящийся в этой цепи замыкания, оказывается под сравнительно малым напряжением.

Малое напряжение - номинальное напряжение не более 42 В ,которое используют для питания электроинструмента, светильников стационарного освещения, переносных ламп в помещениях с повышенной опасностью, особо опасных и на наружных установках. Источниками малого напряжения могут быть специальные понижающие трансформаторы с вторичным напряжением 12-42 В.

Исправ ность изоляции – это основное условие, обеспечивающие безопасность эксплуатации и надежность электроснабжения электроустановок . Для изоляции токоведущих частей электроустановок применяют рабочую и дополнительную изоляцию .

Рабочей изоляцией является эмаль и оплетка обмоточных проводов, пропиточные лаки и компаунды и т.д. Дополнительной изоляцией могут быть пластмассовый корпус машины, изолирующая втулка и т.д.

Электрическая изоляция, состоящая из рабочей и дополнительной, называется двойной . Она считается достаточной для обеспечения электробезопасности, поэтому устройствами с двойной изоляцией разрешается пользоваться без применения других защитных средств.

Контроль сопротивления изоляции может быть периодическим и непрерывным. Сопротивление изоляции силовых и осветительных электропроводов должно быть не менее 0,5 МОм.

Электрическое разделение сетей - разделение сети на отдельные электрически не связанные между собой участки с помо щью разделяющего трансформатора , который изолирует электроприемник от первичной сети и сети заземления (рис.6.8).

От разделяющего трансформатора может питаться только один элек троприемник с защитной плавкой вставкой (сила тока вставки автомата на первичной стороне не должна превышать 15А), вторичное напря жение трансформатора должно быть не выше 380 В . Вторичная обмотка трансформатора и корпус электроприемника не должны иметь заземления или связи с сетью зануления. В таком случае при прикосновении к частям, находящимся под напряжением или к корпусу с поврежденной изоляцией не создается опасность, поскольку вторичная цепь коротка и сила токов утечки в ней и емкостных токов мала.

Защитное разделение сетей используют в электроустановках напряжением до 1000 В, эксплуатация которых связана с особой и повышенной опасностью (передвижные электроустановки, ручной электрифицированный инструмент и т.п.).

Для исключения случайных прикосновений к токоведущим частям электроустановок применяют оградительные сплошные и сетча тые устройства .

Сплошные ограждения обязательны для электроустановок, разме щаемых в производственных (неэлектрических) помещениях . Сетчатые ограждения применяют в электроустановках, доступных квалифицированному электротехническому персоналу .

В случаях, когда изоляция и ограждение токоведущих частей является нецелесообразным (например, воздушные линии высокого напряжения), их размещают на недоступной для прикосновения высоте. Внутри производственных помещений неогражденные неизолированные токоведущие части прокладывают па высоте не менее 3,5 м от пола.

Блокировка - защита от проникновения в опас ную зону, где находится установка . Она позволяет автоматически снимать напряжение со всех элементов установки, приближение к которым угрожает жизни человека. Блокировку применяют в элект рических аппаратах, при обслуживании которых должны соблюдаться повышенные меры безопасности , в электрооборудовании, расположенном в доступных для неэлектротехнического персонала помещениях.

Электробезопасность (по ГОСТ 12.1.009–76 "ССБТ. Электробезопасность. Термины и определения") обеспечивается организационными и техническими мероприятиями, конструкцией электроустановок, применением технических методов, средств защиты.

Организационные меры защиты. Применение защитных мер регламентируется нормативными документами по электробезопасности: Правилами устройства электроустановок (ПУЭ), утвержденными приказом Минэнерго России от 8 июля 2002 г. № 204; Межотраслевыми правилами по охране труда при эксплуатации электроустановок (ПОТ Р М-016-01), утвержденными постановлением Минтруда России от 5 января 2001 г. № 3; Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП9-2003), утвержденными приказом Минэнерго России от 12 января 2003 г. № 6.

Электроустановками называются машины, в которых производится, преобразуется, распределяется и потребляется электроэнергия. Меры защиты должны соответствовать виду электроустановки и условиям применения электрооборудования, обеспечивая достаточную безопасность.

Опасность поражения в электроустановках и его тяжесть зависят от номинального напряжения. Согласно ПУЭ электроустановки подразделяются на (а) работающие под напряжением более 1 кВ с глухозаземленной нейтралью (чаще используются сети напряжением U = 110: 750 кВ) и с изолированной нейтралью (6, 10, 20, 35 кВ) и (б) работающие под напряжением менее 1 кВ с глухозаземленной и с изолированной нейтралью.

Электрические сети напряжением до 1 кВ выполняются, как правило, трехфазными: 660, 380 и 220 В. Чаще применяют четырехпроводные сети напряжением 380/220 В. В ряде производств недопустимо использование сетей с глухозаземленной нейтралью. Силовые электроустановки напряжением 660, 380, 220 В, работающие с изолированной нейтралью, имеют меньшую опасность при однофазном прикосновении ввиду большого сопротивления изоляции проводов.

Классификация помещений. Безопасность при эксплуатации электроустановок существенно зависит от повышенной влажности и температуры воздуха, запыленности и загазованности помещений. Согласно ПУЭ все помещения по опасности поражения током делят на три категории : 1) помещения без повышенной опасности; 2) помещения с повышенной опасностью; 3) особо опасные помещения. При этом выделяют следующие признаки повышенной опасности :

  • – наличие токопроводящих полов – металлических, железобетонных, кирпичных и т.п.;
  • – сырость помещений при относительной влажности воздуха > 75%;
  • – высокая температура воздуха (t > 35 °С);
  • – токопроводящая пыль (металлическая, угольная и др.). Пыльными считаются помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она проникает внутрь машин и оборудования;
  • – возможность одновременного прикосновения человека к заземленной металлоконструкции и к металлическому корпусу электроустановки;
  • – коэффициент заполнения помещения электрооборудованием > 0,2.

Признаки особой опасности :

  • – особая сырость (ф ≈ 100% – стены, пол и потолок покрыты влагой);
  • – наличие химически активной среды (агрессивные пары, газы, жидкости).

Классификация обслуживающего персонала по электробезопасности . Существует пять квалификационных групп по охране труда, зависящих от типа электроустановок и рода работы. Для эксплуатации ручного электрооборудования достаточна первая квалификационная группа. Для управления электрооборудованием с напряжением U менее 1000 В необходима квалификация персонала не ниже второй группы, для работы на электроустановках с U более 1000 В – не ниже третьей.

Способы и меры защиты от поражения электрическим током . Технические способы и средства защиты приведены в ГОСТ 12.1.019–79 "Электробезопасность. Общие требования". Для обеспечения электробезопасности должны применяться отдельно или в сочетании друг с другом следующие технические способы и средства: защитное заземление; зануление; выравнивание потенциалов; электрическое разделение сетей; защитное отключение; изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная); оградительные устройства; предупредительная сигнализация, блокировка; знаки безопасности; средства защиты и предохранительные приспособления.

Защита от прикосновения или опасного приближения к токоведущим частям достигается дополнительной или усиленной изоляцией токоведущих частей; расположением токоведущих частей на недоступной высоте или в недоступном месте; использованием ограждений: сплошных в виде кожухов и крышек (в электроустановках U < 1 кВ) и сетчатых; применением блокировок, предупредительной сигнализации, знаков безопасности. По принципу действия блокировки делятся на механические и электрические. Например, в аппаратуре автоматики и ЭВМ применяют штепсельное соединение отдельных блоков, т.е. механическую блокировку. Электрическая блокировка осуществляет отключение электроустановки при открытии дверей, ограждений, крышек кожухов.

Малое напряжение и электрическое разделение сетей используют для повышения безопасности при работе в основном с ручным электрифицированным инструментом.

Малое напряжение – это номинальное напряжение ≤ 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая степень безопасности достигается при напряжении до 10 В (сила тока при случайном прикосновении I h = 10/1000 = 0,01 А). Источники малого напряжения: батареи, аккумуляторы, трансформаторы – должны быть максимально приближены к потребителю. Для ручного электроинструмента и местного освещения в помещениях с повышенной опасностью и особо опасных помещениях используют напряжение 12, 36, 42 В.

Электрическое разделение сетей : разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли; ток замыкания на землю в такой сети может достигать значительной величины, поэтому однофазное прикосновение в сети является опасным. Опасность поражения резко снизится, если единую сильно разветвленную сеть с большой емкостью и малым сопротивлением разделить на ряд небольших сетей с незначительной емкостью и высоким сопротивлением изоляции с помощью специальных разделяющих трансформаторов.

Защитное заземление, зануление и защитное отключение являются наиболее распространенными техническими средствами для защиты персонала при прикосновении к токоведущим частям электрооборудования, которые могут оказаться под напряжением из-за повреждения изоляции.

Защитное заземление или зануление выполняют: а) во всех случаях при номинальном переменном напряжении ≥ 380 В и постоянном напряжении ≥ 440 В; б) в помещениях с повышенной опасностью и особо опасных при номинальном переменном U = 42: 380 В и постоянном U= 110 -5- 440 В. Таким образом, электроустановки, работающие иод напряжением до 42 В переменного и до 110 В постоянного тока, не требуют защитного заземления и зануления, за исключением некоторых случаев, оговоренных в ПУЭ.

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Принцип действия защитного заземления состоит в снижении до безопасных значений напряжения прикосновения и силы тока, проходящего через человека, обусловленных замыканием на корпус (рис. 5.3). При заземлении корпуса происходит замыкание на землю; прикосновение к заземленному корпусу вызывает появление параллельной ветви, по которой часть тока замыкания проходит на землю через тело человека. Сила тока в параллельных цепях обратно пропорциональна сопротивлениям цепей, поэтому ток, проходящий через тело человека I h, безопасен.

Рис. 5.3.

Область применения защитного заземления – трехфазные сети напряжением до 1 кВ с изолированной нейтралью и сети напряжением более 1 кВ как с изолированной, так и с заземленной нейтралью.

Заземляющее устройство состоит из заземлителя (одного или нескольких металлических элементов, погруженных на определенную глубину в грунт) и проводников, которые соединяют заземляемое оборудование с заземлителем. В зависимости от расположения заземлителей относительно оборудования заземляющие устройства делятся на выносные и контурные. Выносное устройство располагается на некотором удалении от оборудования. Преимуществом такого типа заземляющего устройства является возможность выбора места размещения, недостатком – отдаленность заземлителя от защищаемого оборудования. Контурное устройство, заземлители которого расположены по контуру вокруг заземляемого оборудования, обеспечивают лучшую защиту.

Основной элемент заземляющего устройства – естественный или искусственный заземлитель. Естественными заземлителями могут быть металлические и железобетонные части коммуникаций и других сооружений, имеющие надежное соединение с землей. Для искусственных заземлителей применяют обычно вертикальные и горизонтальные элементы. В качестве вертикальных элементов используют стальные трубы, уголки, прутки, которые соединяют прочно между собой горизонтальными элементами из полосовой стали. Для заземляющих проводников используют полосовую и круглого сечения сталь.

Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических токоведущих частей, которые могут оказаться под напряжением. Это основное средство обеспечения электробезопасности в трехфазных сетях с заземленной нейтралью и U менее 1 кВ (обычно 220/127, 380/220, 660/380 В). В таких сетях уменьшить напряжение на корпусе, контактирующем с токоведущими частями, невозможно, но можно повысить безопасность оборудования, уменьшив длительность замыкания на корпус. В сети с занулением различают (рис. 5.4.): нулевой рабочий проводник HP (для питания током электроприемников) и нулевой защитный проводник НЗ (для зануления).

Рис. 5.4.

1 и 2 – корпусы одно- и трехфазного приемников тока; 3 – плавкие предохранители, I к – ток однофазного короткого замыкания, U ф – фазное напряжение

Зануление превращает замыкание на корпус в однофазное короткое замыкание, возникает ток большой величины, в результате чего срабатывает максимальная токовая защита, которая селективно отключает поврежденный участок. Для того чтобы быстро отключить аварийный участок, ток короткого замыкания, согласно ПУЭ, должен не менее чем в три раза превышать номинальный ток через плавкую вставку или в 1,25–1,4 раза номинальный ток автоматического выключателя. Расчет зануления заключается в определении сечения нулевого провода, удовлетворяющего условию срабатывания максимальной токовой защиты. Если запуленный корпус одновременно заземлен, то это улучшает условия безопасности, так как обеспечивает дополнительное заземление нулевого защитного (НЗ) провода.

Защитное отключение – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Подобная опасность возникает при повреждениях установки, таких как замыкание на землю; снижение сопротивления изоляции; неисправности заземления, зануления или устройства защитного отключения.

Повреждение установки приводит к изменениям некоторых величин, которые можно использовать как входные величины автоматического устройства, осуществляющего защитное отключение. Например, напряжение корпуса относительно земли, напряжение нулевой последовательности (несимметрия напряжения фаз относительно земли), ток замыкания на землю, ток нулевой последовательности и другие параметры могут быть восприняты датчиком автоматического устройства как входная величина (время срабатывания менее 0,2 с). Защитное отключение можно использовать в качестве единственной или основной меры защиты совместно с дополнительным заземлением или занулением или в дополнение к заземлению или занулению.

Электрозащитные средства применяются для защиты людей, работающих с электроустановками, от поражения электрическим током, воздействия электрической дуги и электромагнитного поля. По характеру применения электрозащитные средства подразделяются на две категории: средства коллективной и средства индивидуальной защиты.

Электрозащитные средства могут быть основными и дополнительными. Основными являются средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановки и которые позволяют прикасаться к токоведущим частям, находящимся под напряжением. Средства защиты, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами, служат дополнительными средствами.



Понравилась статья? Поделиться с друзьями: