Интенсивность подачи и удельный расход огнетушащих составов. Методика проведения пожарно-тактических расчетов Требуемая интенсивность подачи огнетушащих средств

В практических расчетах количество огнетушащих средств, тре­буемых для прекращения горения, определяют по интенсивности их подачи. Интенсивностью подачи называется количество огнетушащего средства, подаваемого в единицу времени на единицу соответст­вующего геометрического параметра пожара (площади, объема, пе­риметра или фронта). Интенсивность подачи огнетушащих средств определяют опытным путем и расчетами при анализе потушенных по­жаров:

I = Q о.с / 60t т П, (2.2)

где I - интенсивность подачи огнетушащих средств, л/(м 2 ·с), кг/(м 2 ·с), кг/(м 3 ·с), м 3 /(м 3 ·с), л/(м ·с);

Q о.с - расход огнетушащего средства во время тушения пожара или проведения опыта, л, кг, м 3 ;

t т - время, затраченное на тушение пожара или проведение опыта, мин;

П - величина расчетного параметра пожара: площадь, м 2 ; объем, м 3 ; периметр или фронт, м.

Интенсивность подачи можно определять через фактический удельный расход огнетушащего средства;

I = Q у / 60t т П, (2. 3)

где Q у - фактический удельный расход огнетушащего средства за время прекращения горения, л, кг, м 3 .

Для зданий и помещений интенсивность подачи определяют по тактическим расходам огнетушащих средств на имевших место пожарах:

I = Q ф / П, (2.4)

где Q ф - фактический расход огнетушащего средства, л/с, кг/с,м 3 /с (см, п. 2.4).

В зависимости от расчетной единицы параметра пожара (м 2 , м 3 , м) интенсивность подачи огнетушащих средств подразделяют на поверхностную , объемную и линейную/

Если в нормативных документах и справочной литературе нет данных по интенсивности подачи огнетушащих средств на защиту объектов (например, при пожарах в зданиях), ее устанавливают по тактическим условиям обстановки и осуществления боевых действий по тушению пожара, исходя из оперативно-тактической характериски объекта, или принимают уменьшенной в 4 раза по сравнению с требуемой интенсивностью подачи на тушение пожара

I з = 0,25 I тр, (2.5)

Линейная интенсивность подачи огнетушащих средств для тушения пожаров в таблицах, как правило, не приводится. Она зависит от обстановки на пожаре и, если используется при расчете огнетушащих средств, ее находят как производный показатель от интенсивности поверхностной:

I л = I s h т, (2.6)

где h т - глубина тушения, м (принимается, при тушении ручными стволами -5 м, лафетными - 10 м).

Общая интенсивность подачи огнетушащих средств состоит и двух частей: интенсивности огнетушащего средства, участвующего непосредственно в прекращении горения I пр.г, и интенсивности потерь I пот.

I = I пр.г + I пот. , (2.7)

Средние, практически целесообразные, значения интенсивности подачи огнетушащих средств, называемые оптимальными (требуемыми, расчетными), установленные опытным путем и практикой тушения пожаров, приведены ниже и в табл. 2.5 - 2.10.

Интенсивность подачи воды при тушении пожаров, л/(м 2 с)

Здания и сооружения

Административные здания:
0,06
IV степени огнестойкости 0,10
V степени огнестойкости 0,15
подвальные помещения 0,10
чердачные помещения 0,10
Ангары, гаражи, мастерские, трамвайные и троллейбусные депо 0,20
Больницы 0,10
Жилые дома и подсобные постройки:
I - III степени огнестойкости 0,03
IV степени огнестойкости 0,10
V степени огнестойкости 0,15
подвальные помещения 0.15
чердачные помещения 0,15
Животноводческие здания
I - III степени огнестойкости 0,10
IV степени огнестойкости 0,15
V степени огнестойкости 0,20
Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):
Сцена 0.20
Зрительный зал 0,15
Подсобные помещения 0,15
Мельницы и элеваторы 0,14
Производственные здания
участки и цехи с категорией производства в зданиях::
I - II степени огнестойкости 0,35
III степени огнестойкости 0,20
IV - V степени огнестойкости 0,25
окрасочные цехи 0,20
подвальные помещения 0,30
сгораемые покрытия больших площадей в производственных зданиях:
при тушении снизу внутри здания 0,15
при тушении снаружи со стороны покрытия 0,08
при тушении снаружи при развившемся пожаре 0,15
Строящиеся здания 0,10
Торговые предприятия и склады товарно-материальных ценностей 0,20
Холодильники 0.10
Электростанции и подстанции:
кабельные туннели и полуэтажи (подача тонкораспыленной воды) 0,20
Машинные залы и котельные отделения 0,20
Галереи топливоподачи 0,10
трансформаторы, реакторы, масляные выключатели (подача тонкораспыленной воды) 0,10
2.Транспортные средства
Автомобили, трамваи, троллейбусы на открытых стоянках 0,10
Самолеты и вертолеты:
внутренняя отделка (при подаче тонкораспыленной воды) 0,08
конструкции с наличием магниевых сплавов 0,25
Корпус 0,15
Суда (сухогрузные и пассажирские):
надстройки (пожары внутренние и наружные) при подаче цельных и тонкораспыленных струй 0,20
Трюмы 0,20
3. Твердые материалы
Бумага разрыхленная 0,30
Древесина:
балансовая, при влажности, %
40 – 50 0,20
менее 40 0,50
пиломатериалы в штабелях в пределах одной группы при влажности, %;
6 –14 0,45
20 – 30 0,30
свыше 30 0,20
круглый лес в штабелях 0,3
щепа в кучах с влажностью 30 - 50 % 0,10
Каучук (натуральный или искусственный), резина и резинотехнические изделия 0,30
Льнокостра в отвалах (подачатонкораспыленной воды) 0,20
Льнотресты (скирды, тюки) 0.25
Пластмассы:
Термопласты 0,14
Реактопласты 0,10
Полимерные материалы и изделия из них 0,20
текстолит, карболит, отходы пластмасс, триацетатная пленка 0,30
Торф на фрезерных полях влажностью 15 - 30 % (при удельном расходе воды 110 - 140 л/м 2 и времени тушения 20 мин.) 0,10
Торф фрезерный в штабелях (при удельном расходе воды 235 л/м и времени тушения 20 мин) 0,20
Хлопок и другие волокнистые материалы:
Открытые склады 0,20
Закрытые склады 0,30
Целлулоид и изделия из него 0,40
Ядохимикаты и удобрения
4. Легковоспламеняющиеся и горючие жидкости (при тушении тонкораспыленной водой)
Ацетон 0,40
Нефтепродукты в емкостях:
С температурой вспышки ниже 28 о С 0,30
С температурой вспышки 28 - 60 о С 0,20
С температурой вспышки более 60 °С 0,20
Горючая жидкость, разлившаяся на поверхности площадки, в траншеях технологических лотках 0,20
Термоизоляция, пропитанная нефтепродуктами 0,20
Спирты (этиловый, метиловый, пропиловый, бутиловый и др.) на складах и спиртзаводах 0,40
0,20

Примечания: 1. При подаче воды со смачивателем интенсивность подачи по таблице снижается в 2 раза.

2. Хлопок, другие волокнистые материалы и торф необходимо тушить только с добавлением смачивателя.

ТАБЛИЦА 2.5. ИНТЕНСИВНОСТЬ ПОДАЧИ 6 %-НОГО РАСТВОРА ПРИ ТУШЕНИИ ПОЖАРОВ ВОЗДУШНО-МЕХАНИЧЕСКОЙ ПЕНОЙ НА ОСНОВЕ ПЕНООБРАЗОВАТЕЛЯ ПО-1

Здания, сооружения, вещества и материалы Интенсивность подачи раствора, л/(м 2 ·с)
пена средней кратности пена низкой кратности
1. Здания и сооружения
Объекты переработки углеводородных газов, нефти и нефтепродуктов:
Аппараты открытых технологических установок 0,10 0.25
Насосные станции 0,10 0,25
Разлитый нефтепродукт из аппаратов технологической установки, в помещениях, в технологических лотках 0,10 0,25
Тарные хранилища горючих и смазочных материалов 0.08 0.25
Цехи полимеризации синтетического каучука 1,00 -
Электро станции и в подстанции:
Котельные и машинные отделения 0,05 0,10
Трансформаторы и масляные выключатели 0,20 0,15
2. Транспортные средства
Самолеты и вертолеты:
Горючая жидкость на бетоне 0,08 0,15
Горючая жидкость на грунте 0,25 0,15
Нефтеналивные суда:
Нефтепродукты первого разряда (темпера вспышки ниже 28 о С) 0,15 -
Нефтепродукты второго и третьего разряда (темпера вспышки 28 о С и выше) 0,10 -
Сухогрузы, пассажирские и нефтеналивные суда:
Трюмы и надстройки (внутренние пожары) 0,13 -
Машинно-котельное отделение 0,10 -
3. Материалы и вещества
Каучук, резина, резинотехнические изделия 0,20 -
Нефтепродукты в резервуарах:
Бензин, лигроин, керосин тракторный и другие с температурой вспышки ниже 28 о С 0,08 0,12*
керосин осветительный и другие с температурой вспышки 28 о С и выше 0,05 0,16
Мазуты и масла 0,05 0,10
Нефть в резервуарах 0,05 0,12*
Нефть и конденсат вокруг скважины фонтана 0,05 0,15
Разлившаяся горючая жидкость на территории, в траншеях и технологических лотках (при обычной температуре вытекающей жидкости) 0.05 0,15
Пенополистирол (ПС-1) 0,08 0,12
Твердые материалы 0,10 0,15
Термоизоляция, пропитанная нефтепродукта­ ми 0,05 0,10
Цмклогексан 0,12 0,15
Этиловый спирт в резервуарах, предварительно разбавленный водой до 70 % (подача10 % раствора на основе ПО-1С) 0,35 -

Примечания: 1. Звездочкой обозначено, что тушение пеной низкой кратности нефти и нефтепродуктов с температурой вспышки ниже 28 °С допускается в резервуарах до 1000 м 3 , исключая низкие уровни (более 2 м от верхней кромки борта резервуара).

2. При тушении нефтепродуктов с применением пенообразователя ПО-1Д интенсивность подачи пенообразующего раствора увеличивается в 1,5 раза.

ТАБЛИЦА 2.6. ИНТЕНСИВНОСТЬ ПОДАЧИ СРЕДСТВ ДЛЯ ТУШЕНИЯ СТРУЙНОГО ФАКЕЛА НА ОТКРЫТЫХ ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ

Интенсивность подачи огнетушащих порошковых составов (ОПС) при тушении некоторых пожаров кг/(м 2 ·с)

ТАБЛИЦА 2.7. ОГНЕТУШАЩИЕ КОНЦЕНТРАЦИИ НЕКОТОРЫХ ГАЛОИДОУГЛЕВОДОРОДОВ, СОСТАВОВ НА ИХ ОСНОВЕ И ДРУГИХ ВЕЩЕСТВ

Условное обозначение Компоненты, % Расчетная концентрация
% об. кг/м 3
3,5 Бромистый этил - 70 Диоксид углерода - 30 6,7 0,290
- 4НД Бромистый этил - 100 Бромистый этил -97 Диоксид углерода - 3 5,4 5,6 0,242 0,203
Бромистый метилен - 80 Бромистый этил - 20 3,0 0,157
БФ-1 Бромистый этил - 84 Тетрафторднбромэтан - 16 4,8 0.198
БФ-2 Бромистый этил - 73 Тетрафторднбромэтан - 27 4,6 0,192
БМ Бромистый этил -70 Бромистый метилен - 30 4,6 0,184
Хладон 114В2 Тетрафтордибромэтав - 100 3,0 0,250
Хладон 13В1 - - Трифторбромметан - 100 Диоксид углерода - 100 Водяной пар - 100 4,0 0,260 0,70 0,30

ТАБЛИЦА 2.8. ИНТЕНСИВНОСТЬ ПОДАЧИ СРЕДСТВ ГАЗОВОГО ТУШЕНИЯ (ДЛЯ ПОМЕЩЕНИЙ ОБЪЕМОМ ДО 500 м 2)

ТАБЛИЦА 2.9. ИНТЕНСИВНОСТЬ ПОДАЧИ РАСПЫЛЕННОЙ ВОДЫ ДЛЯ ЛОКАЛИЗАЦИИ ГОРЕНИЯ СТРУЙНОГО ФАКЕЛА ПРИ ПОЖАРАХ НА ОТКРЫТЫХ ТЕХНОЛОГИЧЕСКИХ УСТАНОВКАХ ПО ПЕРЕРАБОТКЕ ГОРЮЧИХ ЖИДКОСТЕЙ И ГАЗОВ

Наименование параметра Значение
Тема статьи: Интенсивность подачи огнетушащего вещества
Рубрика (тематическая категория) Литература

Исходные данные для расчета тушения пожаров огнетушащими веществами

В качестве расчетного параметра пожара могут применяться площадь пожара, площадь тушения, периметр пожара, фронт пожара, объём зоны горения.

Следовательно, интенсивность подачи огнетушащего вещества должна быть поверхностная, линœейная и объёмная.

Поверхностной интенсивностью подачи огнетушащего вещества принято называть количество огнетушащего средства, подаваемого в единицу времени на единицу площади пожара или площади тушения.

I тр S = Q тр / (τ р ·S п), л/(c · м 2) (8)

I ф s = Q ф / (τ т ·S т) (9)

S п > S т ·

I ф > I тр

где: S п - площадь пожара, м 2 ;

S т - площадь тушения, м 2 .

Линœейной интенсивностью подачи огнетушащего вещества принято называть количество огнетушащего средства, подаваемое в единицу времени на единицу периметра или фронта пожара.

I тр р = Q тр / (τ р · Р п), л/(c · м) (10)

I ф р = Q ф / (τ т · Ф п), л/(c · м) (11)

Р п > Ф п

где: Р п - периметр пожара, м;

Ф п - фронт пожара, м.

Линœейная интенсивность подачи не является обязательным показателœем в расчете сил и средств для тушения пожара, т.к. во всœех случаях подача и действие огнетушащих средств осуществляется по площади пожара или тушения. При этом линœейная интенсивность в расчетах не исключается.

При крайне важно сти, в случае если известна поверхностная интенсивность подачи огнетушащего вещества, то линœейную интенсивность подачи огнетушащего вещества можно определить из следующего соотношения:

I тр р = I тр s · h т, л/(с · м) (12)

Объемной интенсивностью принято называть количество огнетушащего средства, подаваемое в единицу времени на единицу объёма зоны горения или горящего помещения.

I тр v = Q тр / (τ р · V п), л/(с · м 3), м 3 /(с · м 3) (13)

I ф v = Q ф / (τ т · V п), л/(с · м 3), м 3 /(с · м 3) (14)

где: V п - объём зоны горения или объём горящего помещения, м 3 .

Объемная интенсивность подачи является основным показателœем в расчете сил и средств тушения пожаров воздушно-механической пеной, инœертными газами, водяным паром, галоидоуглеводородами и составами на их основе.

В практических расчетах часто возникает крайне важно сть определить интенсивность подачи огнетушащего вещества на защиту различных объектов, но в справочной литературе перечень объектов ограничен, рассматриваются лишь интенсивности подачи воды на охлаждение наземных резервуаров с нефтепродуктами, металлических поверхностей трансформаторов, масляных выключателœей на электростанциях и подстанциях, защита дыхательной арматуры и коммуникаций подземных резервуаров с нефтепродуктами, орошение противопожарного занавеса в театрально-зрелищных учреждениях.

При крайне важно сти интенсивность подачи огнетушащего вещества на защиту определяется из соотношения:

I тр з = 0,25I тр т (15)

Интенсивность подачи огнетушащего вещества находится в функциональной зависимости от времени тушения пожара. Чем больше расчетное время тушения пожара, тем меньше расчетная интенсивность подачи огнетушащих веществ, и наоборот. Область интенсивности подачи от нижнего до верхнего пределов принято называть областью тушения. Все интенсивности, лежащие в этой области, могут применяться для тушения. Это дает возможность РТП широко маневрировать имеющимися в его распоряжении силами и средствами. РТП должен учитывать и тот факт, что на интенсивность подачи огнетушащих веществ оказывает влияние расположение пожарной нагрузки по высоте помещения.

В практике пожаротушения целœесообразно использовать такие интенсивности подачи огнетушащих веществ, которые бывают реализованы существующими техническими средствами подачи и обеспечивать эффективность тушения с минимальными расходами огнетушащих веществ и за оптимальное время.

Интенсивность подачи огнетушащего вещества - понятие и виды. Классификация и особенности категории "Интенсивность подачи огнетушащего вещества" 2017, 2018.

Общая интенсивность подачи огнетушащих средств состоит из двух частей: интенсивности огнетушащего средства, участвующего непосредственно в прекращении горения Iпр. г и интенсивности потерь Iпот: I= Iпр. г + Iпот

Способ тушения пожара Вид и характер выполнения боевых действий в определенной последовательности, направленных на создание условия прекращения горения.

Из графика видно, что температура потухания Тп значительно выше температуры самовоспламенения горючего вещества Тс и ниже температуры горения с появлением пламени. Чтобы прекратить горение при тушении пожара, необходимо нарушить тепловое равновесие, изменив температурный уровень реакции горения. Для этого нужно снизить температуру в зоне реакции ниже температуры потухания. Достигнуть указанного условия можно двумя путями: увеличением скорости теплоотвода; уменьшением скорости тепловыделения.

В зависимости от расчетной единицы параметра пожара (м 2, м 3, м) интенсивность подачи огнетушащих средств подразделяют на поверхностную (Is л/ (м 2 с), кг/(м 2 с), объемную (Iv, кг/(м 3 с), м 3/(м 3 с) линейную (Iл, л/(мс)

ТРЕБУЕМЫЙ РАСХОД Это весовое или объемное количество подаваемого в единицу времени на величину соответствующего параметра тушения пожара или защиты объекта, которому угрожает опасность.

Требуемый расход огнетушащего средства на тушение пожара вычисляют по формуле: Qтр = Пт х Jтр т т Где требуемый расход огнетушащего средства на тушение пожара, л/с, кг/с, м 3 /с, Пт - величина расчетного параметра тушения пожара: площадь - м 2, объем - м 3, периметр или фронт - м, Iтрт - интенсивность подачи огнетушащего средства для тушения пожара: поверхностная Is - л/(м 2 с), кг/(м 2 с), объемная Iv кг/(м 3 с), м 3/(м 3 с) или линейная Iл - л/(мс).

Требуемый расход воды на защиту объекта определяют по формуле: Qтр3 = П 3 х J 3 Где Qтр3 - требуемый расход вода на защиту объекта, л/с; П 3 величина расчетного параметра защиты: площадь м 2, периметр или часть длины защищаемого участка, м; I 3 поверхностная (или соответственно линейная интенсивность подачи воды для защиты в зависимости от принятого расчетного параметра, л/(м 2 с), л/(мс). .

Защищаемую площадь определяют с учетом условий обстановки на пожаре и оперативно-тактических факторов. Например, при пожаре в двух комнатах второго этажа трехэтажного жилого дома однотипной планировкой площадь защиты на первом и третьем этажах можно принять равной площадям двух комнат, расположенных над местом пожара и под ним. С учетом тушения пожара и защиты объектов формула требуемого расхода огнетушащего средства будет иметь вид: Qтр = Qтрт +Qтр3

При объемном тушении пожара пеной средней или высокой кратности требуемый расход пены для заполнения помещения определяем по формуле: Qтрп = Vп х К 3/ Тр Где Qтрп - требуемый расход пены, м 3/мин. ; Vп - объем, заполняемый пеной, м 3; Тр - расчетное время тушения; К 3 коэффициент, учитывающий разрушение пены, принимаемый в пределах 1, 5. . . 3.

По требуемому расходу оценивают необходимую скорость сосредоточения огнетушащего средства, условия локализации пожара, определяют необходимое количество технических приборов подачи огнетушащего средства (водяных и пенных стволов, пеногенераторов и других) : Nприбт = Qтрт / Qприб Nприбз = Qтрз / Qприб Где Nприбт Nприбз - соответственно количество технических приборов подачи огнетушащего средства (водяных стволов, СВП, ГПС) на тушение пожара и защиту, шт; Qтрз Qтрт - соответственно требуемый расход огнетушащего средства (воды, раствора, пены и др.) на тушение пожара и для защиты, л/с, кг/с, м 3/с; Qприб - подача (расход) определяемого огнетушащего средства (воды, пены, порошка) из технического прибора подачи, л/с.

На практике при защите объектов водяными струями необходимое количестволов чаще всего определяют по числу мест защиты. При этом всесторонне учитывают условия обстановки на пожаре, оперативно-тактические факторы и требования Боевого устава пожарной охраны (БУПО). Например, при пожаре в одном или нескольких этажах здания с ограниченными условиями распространения огня стволы для защиты подают в смежные с горящими помещениями, нижний и верхний от горящего этажи, исходя из числа мест защиты и обстановки на пожаре.

Если имеются условия для распространения огня по пустотелым конструкциям, вентиляционным каналам и шахтам, то стволы для защиты подают в смежные с горящим помещения, в верхние этажи вплоть до чердака, нижний от горящего этаж и последующие нижние этажи, исходя из обстановки на пожаре. Число стволов в смежных помещениях на горящем этаже, в нижнем и верхнем от горящего этажах должно соответствовать числу мест защиты по тактическим условиям, а на остальных этажах и чердаке должно быть не менее одного. Учитывая изложенный принцип, можно определить необходимое число стволов для защиты при пожаре на любом объекте.

ФАКТИЧЕСКИЙ РАСХОД Это весовое или объемное количество огнетушащего средства, фактически продаваемого в единицу времени на величину соответствующего параметра тушения пожара или защиты объекта, которому угрожает опасность. Эту величину измеряют теми же единицами, что и требуемый расход.

В общем виде фактический расход определяют по формуле: Q ф = Q фт + Q фз Где Qфт, Qфз соответственно фактический расход на тушение пожара и для защиты определяют по формулам: Qфт = Nприб х. Т Qприб Qфз = Nприб х. З Qприб

По фактическому расходу оценивают действительную скорость сосредоточения огнетушащего средства и условия локализации пожара по сравнению с требуемым расходом, определяют необходимое число пожарных машин основного назначения с учетом использования насосов на полную тактическую возможность, обеспеченность объекта водой при наличии противопожарного водопровода и другие показатели. По величине фактический расход не может быть меньше требуемого, что является необходимым фактором в создании условия локализации пожара.

ОБЩИЙ РАСХОД Это весовое или объемное количество огнетушащего средства, необходимого на весь период прекращения горения и защиты негорящих объектов с учетом запаса (резерва). По общему расходу определяют необходимое количество огнетушащих средств на ликвидацию пожара, проверяют обеспеченность объекта водой при наличии пожарных водоемов, разрабатывают соответствующие мероприятия по организации тушения пожара.

Общий расход воды при ликвидации пожаров и защите негорящих объектов (аппаратов, конструкций) расчитывают по формуле: Q = Qфт 60 Тр х Кз + Qфз 3600 Тз Где общий расход огнетушащего средства (в данном случае воды), л, м 3; Тр- расчетное время тушения пожара, мин. Кз коэффициент запаса огнетушащего средства; Тз время, на которое расчитан запас огнетушащего средства.

При ликвидации пожаров другими огнетушащими средствами и защите объектов водой их общий расход определяют раздельно. Так, при тушении пожаров пенами, негорючими газами, порошками, галоидоуглеводородами общий расход воды на тушение (например пенообразования) и для защиты объектов рассчитывают по формуле, а специальных средств по уравнению: Qобщо, с = Nприб хт Qприб х 60 х Тр х Кз Где - общий расход огнетушащего средства: пенообразователя. Порошка, негорючего газа и т. д. . , л(кг, т, м 3); - подача (расход) определяемого огнетушащего средства из прибора подачи, л/с, кг/с, м 3/с.

ОГНЕТУШАЩИЕ ВЕЩЕСТВА Это вещества и материалы, с помощью которых прекращается горение. Все огнетушащие средства в зависимости от принципа прекращения горения разделяются на виды: охлаждающие зону реакции или горящие вещества(вода, водные растворы солей, твердый диоксид углерода и т. д.) разбавляющие вещества в зоне реакции горения (инертные газы, водяной пар, тонкораспыленная вода и др.) изолирующие вещества от зоны горения (химическая и воздушно-механическая пены, огнетушащие порошки, негорючие сыпучие вещества, листовые материалы и др.) химически тормозящие реакцию горения (составы 3, 5; хладоны 114 В, 13 В 1 и др.)

СПОСОБЫ ПРЕКРАЩЕНИЯ ГОРЕНИЯ Охлаждение зоны горения или горящих веществ Изоляция реагирующих веществ от зоны горения Разбавление реагирующих веществ в зоне реакции негорючими веществами Химическое торможение реакции горения

ОХЛАЖДЕНИЕ ЗОНЫ ГОРЕНИЯ ИЛИ ГОРЯЩИХ ВЕЩЕСТВ Взаимодействие на поверхность горящих материалов огнетушащими средствами. Охлаждение горящих материалов их перемешиванием

Вода - основное огнетушащее средство охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью. При попадании на горящее вещество вода частично испаряется и превращается в пар. При испарении ее объем увеличивается в 1700 раз, благодаря чему кислород воздуха вытесняется из зоны очага пожара водяным паром.

Вода, имея высокую теплоту парообразования, отнимает от горящих материалов и продуктов горения большое количество теплоты. Вода обладает высокой термической стойкостью; ее пары только при температуре выше 1700 о С могут разлагаться на кислород и водород. В связи с этим тушение водой большинства твердых материалов (древесины, пластмасс, каучука и др.) безопасно, так как температура горения не превышает 1300 о С.

Огнетушащая эффективность воды зависит от способа подачи ее в очаг пожара (сплошной или распыленной струей). Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения. Распыленная вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Чтобы избежать ненужных потерь, распыленную воду применяют в основном при сравнительно небольшой высоте пламени, когда можно подать ее между пламенем и нагретой поверхностью.

Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок, а также для осаждения дыма. В зависимости от вида горящих материалов используют распыленную воду различной степени дисперсности.

Однако вода характеризуется и отрицательными свойствами: электропроводна, имеет большую плотность (не применяется для тушения нефтепродуктов как основное огнетушащее средство), способна вступать в реакцию с некоторыми вещества и бурно реагировать с ними, имеет низкий коэффициент использования в виде компактных струй, сравнительно высокую температуру замерзания (затрудняется тушение в зимнее время) и высокое поверхностное натяжение - 72, 8 х 103 Дж / м 2 (является показателем низкой смачивающей способности воды).

Вода со смачивателем. Добавка смачивателей позволяет значительно снизить поверхностное натяжение воды. В таком виде она обладает хорошей проникающей способностью, за счет чего достигается наибольший эффект в тушении пожаров и особенно при горении волокнистых материалов, торфа, сажи. Водные растворы смачивателей позволяют уменьшить расход воды на 30. . . 50 %, а также продолжительность тушения пожара.

Твердый диоксид углерода (углекислота в снегообразном виде) тяжелее воздуха в 1, 53 раза, без запаха, плотность 1, 97 кг/м 3. При нагрева-нии переходит в газообразное вещество, минуя жидкую фазу, что позволяет применять его для тушения материа-лов, которые портятся при смачивании. Теплота испаре-ния при -78, 5 о С составляет 572, 75 Дж/кг. Неэлектропро-воден, не взаимодействует с горючими веществами и материалами. Имеет широкую область применения.

Диоксид углерода в состоянии аэрозоля образуется при выпуске из изотермической емкости в атмосферу сжиженного диоксида углерода. После дросселирования имеет устойчивое состояние. 1 кг аэрозоля при нагревании до 20 о С может поглотить 389, 37 к. Дж теплоты, что эквивалентно охлаждению 5 кг воздуха от 100 до 20 о. С. Аэрозоль хорошо проникает в мелкие поры и глубокие трещины, может быть эффективно использован при тушении древесины, ткани, бумаги, волокнистых материалов при открытом и скрытом горении, а также пожаров в подвалах, кабельных туннелях, в помещениях с наличием электроустановок

Химическая пена получается в пеногенераторах путем смешения пеногенераторных порошков и в огнетушителях при взаимодействии кислотного и щелочного растворов. Обладает высокой стойкостью и эффективностью в тушении многих пожаров. Однако вследствии электропроводности и химической активности химическую пену не применяют для тушения электро- и радиоустановок, электронной техники, двигателей различного назначения, других аппаратов и агрегатов.

Воздушно-механическая пена (ВМП) получается смешением в пенных стволах или генераторах водного раствора пенообразователя с воздухом. Пена бывает низкой, средней и высокой кратности. ВМП обладает необходимой стойкостью, дисперсностью, вязкостью, охлаждающими и изолирующими свойствами, которые позволяют использовать ее для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности объемного заполнения горящих помещений (пена средней и высокой кратности). ВМП менее электропроводна, чем химическая пена, и более электропроводна, чем вода. Поэтому тушение ею электроустановок с помощью ручных средств может производиться только после их обесточивания.

Огнетушащие порошковые составы (ОПС) являются универсальными и эффективными средствами тушения пожаров при сравнительно незначительных удельных расходах. ОПС применяют для тушения горючих материалов и веществ любого агрегатного состояния, электроустановок под напряжением, металлов, в том числе металлоорганичесикх и других пирофорных соединений, не поддающихся тушению водой и пенами, а также пожаров при значительных минусовых температурах. Они способны оказывать эффективные действия на подавление пламени комбинированно: охлаждением, изоляцией, разбавлением газообразными продуктами разложения порошка или порошковым облаком, химическим торможением реакции горения.

Основным недостатком ОПС является склонность их к слеживанию и комкованию. Из-за большой дисперсности ОПС образует большое количество пыли, что обусловливает необходимость работы в специальной одежде, а также с предохранительными для органов дыхания и зрения средствами.

Азот N 2 Негорюч и не поддерживает горения большинства органических веществ. Хранят и транспортируют в баллонах в сжатом состоянии. Используют в стационарных установках. Применяют для тушения натрия, калия, бериллия, кальция, других металлов, которые горят в атмосфере диоксида углерода, а также пожаров в технологических аппаратах и электроустановках. Азот нельзя применять для тушения магния, алюминия, лития, циркония и некоторых других металлов, способных образовывать нитриды, обладающих взрывчатыми свойствами и чувствительных к удару. Для их тушения используют инертный газ аргон.

Водяной пар. Эффективность тушения невысокая, поэтому применяют для защиты закрытых технологических аппаратов и помещений объемом до 500 м 3 (трюмы судов, трубчатые печи нефтехимических предприятий, насосные по перекачке нефтепродуктов, сушильные и окрасочные камеры), для тушения небольших пожаров на открытых площадках и создания завес вокруг защищаемых объектов. Огнетушащая концентрация - 35% по объему.

Тонкораспыленная вода (размеры капель менее 100 мк) получаются с помощью специальной аппаратуры: стволовраспылителей, гидротрансформаторов, работающих при высоком напоре (200. . . 300 м). Струи имеют небольшую величину ударной силы и дальность полета, однако орошают значительную поверхность, более благоприятны к испарению воды, обладают повышенным охлаждающим эффектом, хорошо разбавляют горячую среду. Они позволяют не увлажнять излишне материалы при их тушении, способствуют быстрому снижению температуры, осаждению дыма. Тонкораспыленную воду используют не только для тушения горящих твердых материалов, нефтепродуктов, но и для защитных действий.

Галоидоуглеводороды и составы на их основе (огнетушащие средства химического торможения реакции) эффективно подавляют горение газообразных, жидких, твердых, горючих веществ и материалов при любых видах пожаров. По эффективности они превышают инертные газы в 10 и более раз. Галоидоуглеводороды и составы на их основе являются летучими соединениями, представляют собой газы или легкоиспаряющиеся жидкости, которые плохо растворяются в воде, но хорошо смешиваются со многими органическими веществами.

Они обладают хорошей смачивающей способностью, неэлектропроводны, имеют высокую плотность в жидком и газообразном состоянии, что обеспечивает возможность образования струи, проникновения в пламя, а также удержания паров около очага горения. Эти огнетушащие средства можно применять для поверхностного объемного и локального тушения пожаров. С большим эффектом их можно использовать при ликвидации горения волокнистых материалов, электроустановок и оборудования, находящихся под напряжением; для защиты от пожаров транспортных средств, машинных отделений судов, вычислительных центров, особо опасных цехов химических предприятий, окрасочных камер архивов, музейных залов и др. Галоидоуглеводороды и составы на их основе практически можно использовать при любых отрицательных температурах.

Недостатками этих огнетушащих средств являются: коррозивная активность, токсичность, их нельзя применять для тушения материалов, содержащих в своем составе кислород, а также металлов, некоторых гидридов металлов и многих металлоорганических соединений. Несмотря на большую эффективность, область применения галоидоуглеводородов и составов на их основе ограничена из-за высокой стоимости. В основном их используют в стационарных установках и огнетушителях, предназначенных для защиты объектов, представляющих особую важность.

Бромэтиловая эмульсия, другие водные растворы галоидоуглеводородов и огнетушащие порошковые составы Бромэтиловая эмульсия состоит из 90% воды и 10 % бромистого этила. Она является эффективным средством при тушении бензола, толуола, метилового спирта, пожаров на самолетах и многих других. Эффективность бромэтиловой эмульсии по сравнению с обычной водой выше в 7. . . 10 раз.

Огнетушащие порошковые составы (ОПС) Общего назначения (способные создавать огнетушащее облако (ПСБ, П-1 А)), -для тушения большинства пожаров) Специальные(создающие на поверхности горящих материалов слой, предотвращающий доступ кислорода воздуха (порошки типа ПС и комбинированные типа СИ), - для тушения металлов и металлоорганических соединений.

Изоляция реагирующих веществ от зоны горения Создание изолирующего слоя в горючих материалах: а) нанесением на их поверхность огнетушащих средств; б) при помощи взрыва взрывчатых веществ; в) разборкой, сжиганием и т. д. Создание изолирующего слоя в проемах помещений, где происходит пожар

Разбавление реагирующих веществ в зоне реакции негорючими веществами Разбавление: а) воздуха введением в негорючих паров и газов; б) горящих материалов нанесением на их поверхность легкоиспаряющихся или разлагающихся негорючих веществ;

Интенсивность подачи огнетушащих средств. Количество огнетушащего средства, подаваемого в единицу времени на единицу соответствующего геометрического параметра пожара (площади, объема, периметра или фронта)

Интенсивность подачи огнетушащих средств определяют опытным путем и расчетами при анализе потушенных пожаров: I=Qос/ 60 Т тх П Где - интенсивность подачи огнетушащих средств, л/(м 2 с, кг/(м 3 с), кг/(м 2 с), м 3/(м 3 с), л/(мс); - расход огнетушащего средства во время тушения пожара или проведения опыта, л, кг, м 3; - время затраченное на тушение пожара, мин; П величина расчетного параметра пожара: площадь, м 2; объем, м 3; периметр или фронт, м

Огнетушащие средства имеют первостепенное значение в прекращении горения. Однако горение может быть ликвидировано лишь в том случае, когда для его прекращения подается определенное количество огнетушащего вещества.

В практических расчетах количество огнетушащих средств, требуемых для прекращения горения, определяют по интенсивности их подачи. Интенсивностью подачи называется количество огнетушащего средства, подаваемого в единицу времени на единицу соответствующего геометрического параметра пожара (площади, объема, периметра или фронта). Интенсивность подачи огнетушащих средств определяют опытным путем и расчетами при анализе потушенных пожаров:

I = Q о. с / 60tт П,

I - интенсивность подачи огнетушащих средств, л/ (м 2 ·с), кг/ (м 2 ·с), кг/ (м 3 ·с), м 3 / (м 3 ·с), л/ (м ·с);

Qо. с - расход огнетушащего средства во время тушения пожара или проведения опыта, л, кг, м 3 ;

Tт - время, затраченное на тушение пожара или проведение опыта, мин;

П - величина расчетного параметра пожара: площадь, м 2 ; объем, м 3 ; периметр или фронт, м.

Интенсивность подачи можно определять через фактический удельный расход огнетушащего средства;

I = Qу / 60tт П,

Где Qу - фактический удельный расход огнетушащего средства за время прекращения горения, л, кг, м3.

Для зданий и помещений интенсивность подачи определяют по тактическим расходам огнетушащих средств на имевших место пожарах:

Где Qф - фактический расход огнетушащего средства, л/с, кг/с, м3/с (см, п.2.4).

В зависимости от расчетной единицы параметра пожара (м 2 , м 3 , м) интенсивность подачи огнетушащих средств подразделяют на поверхностную , объемную и линейную .

Если в нормативных документах и справочной литературе нет данных по интенсивности подачи огнетушащих средств на защиту объектов (например, при пожарах в зданиях), ее устанавливают по тактическим условиям обстановки и осуществления боевых действий по тушению пожара, исходя из оперативно-тактической характеристики объекта, или принимают уменьшенной в 4 раза по сравнению с требуемой интенсивностью подачи на тушение пожара

I з = 0,25 I тр,

Линейная интенсивность подачи огнетушащих средств для тушения пожаров в таблицах, как правило, не приводится. Она зависит от обстановки на пожаре и, если используется при расчете огнетушащих средств, ее находят как производный показатель от интенсивности поверхностной:

Где h т - глубина тушения, м (принимается, при тушении ручными стволами - 5 м, лафетными - 10 м).

Общая интенсивность подачи огнетушащих средств состоит и двух частей: интенсивности огнетушащего средства, участвующего непосредственно в прекращении горения I пр. г, и интенсивности потерь I пот.

I = I пр. г + I пот.

Средние, практически целесообразные, значения интенсивности подачи огнетушащих средств, называемые оптимальными (требуемыми, расчетными), установленные опытным путем и практикой тушения пожаров, приведены ниже и в табл.1

Интенсивность подачи воды при тушении пожаров, л/ (м 2 с)

Объект тушения

Интенсивность

1. Здания и сооружения

Административные здания:

I - III степени огнестойкости

IV степени огнестойкости

V степени огнестойкости

Подвальные помещения

Чердачные помещения

Ангары, гаражи, мастерские, трамвайные и троллейбусные депо

Больницы

Жилые дома и подсобные постройки:

I - III степени огнестойкости

IV степени огнестойкости

V степени огнестойкости

Подвальные помещения

Чердачные помещения

Животноводческие здания

I - III степени огнестойкости

IV степени огнестойкости

V степени огнестойкости

Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы культуры):

Зрительный зал

Подсобные помещения

Мельницы и элеваторы

Производственные здания

I - II степени огнестойкости

III степени огнестойкости

IV - V степени огнестойкости

Окрасочные цехи

Подвальные помещения

Сгораемые покрытия больших площадей в производственных зданиях:

При тушении снизу внутри здания

При тушении снаружи со стороны покрытия

При тушении снаружи при развившемся пожаре

Строящиеся здания

Торговые предприятия и склады товарно-материальных ценностей

Холодильники

Электростанции и подстанции:

Кабельные туннели и полуэтажи (подача тонкораспыленной воды)

Машинные залы и котельные отделения

Галереи топливоподачи

Трансформаторы, реакторы, масляные выключатели (подача тонкораспыленной воды)

2. Транспортные средства

Автомобили, трамваи, троллейбусы на открытых стоянках

Самолеты и вертолеты:

Внутренняя отделка (при подаче тонкораспыленной воды)

Конструкции с наличием магниевых сплавов

Суда (сухогрузные и пассажирские):

Надстройки (пожары внутренние и наружные) при подаче цельных и тонкораспыленных струй

3. Твердые материалы

Бумага разрыхленная

Древесина:

Балансовая, при влажности, %

Пиломатериалы в штабелях в пределах одной группы при влажности, %;

Круглый лес в штабелях

Щепа в кучах с влажностью 30 - 50 %

Каучук (натуральный или искусственный), резина и резинотехнические изделия

Льнокостра в отвалах (подача тонкораспыленной воды)

Льнотресты (скирды, тюки)

Пластмассы:

Термопласты

Реактопласты

Полимерные материалы и изделия из них

Текстолит, карболит, отходы пластмасс, триацетатная пленка

Торф на фрезерных полях влажностью 15 - 30 % (при удельном расходе воды 110 - 140 л/м2 и времени тушения 20 мин.)

Торф фрезерный в штабелях (при удельном расходе воды 235 л/м и времени тушения 20 мин)

Хлопок и другие волокнистые материалы:

Открытые склады

Закрытые склады

Целлулоид и изделия из него

4. Легковоспламеняющиеся и горючие жидкости (при тушении тонкораспыленной водой)

Нефтепродукты в емкостях:

С температурой вспышки ниже 28оС

С температурой вспышки 28 - 60оС

С температурой вспышки более 60°С

Горючая жидкость, разлившаяся на поверхности площадки, в траншеях технологических лотках

Термоизоляция, пропитанная нефтепродуктами

Спирты (этиловый, метиловый, пропиловый, бутиловый и др.) на складах и спиртзаводах

Нефть и конденсат вокруг скважины фонтана

Примечания:

1. При подаче воды со смачивателем интенсивность подачи по таблице снижается в 2 раза.

2. Хлопок, другие волокнистые материалы и торф необходимо тушить только с добавлением смачивателя.

Расход воды на пожаротушение определяется в зависимости от класса функциональной пожарной опасности объекта, его огнестойкости, категории пожарной опасности (для производственных помещений), объема согласно СП 8.13130.2009, для наружного пожаротушения и СП 10.13130.2009, для внутреннего пожаротушения.

Практическая работа №25

Определение критической и оптимальной интенсивности подачи пены

Цель работы: изучив теоретическую часть практической работы научиться определять параметры подачи пены для прекращения горения

Теоретическая часть

Процесс прекращения горения жидкости пеной можно условно разделить на две стадии: растекание пены по зеркалу жидкости и накапливания изолирующего слоя. На обеих стадиях происходит разрушение пены под действием различных факторов. Накопление пены на поверхности горючего может начаться, если интенсивность её подачи больше интенсивности разрушения. Необходимо помнить, что интенсивность подачи J всегда задается в л/(с*м2) по пенообразующему раствору. Произведение JK (K – кратность пены) равно интенсивности подачи пены. Интенсивность подачи, при которой количество подаваемой пены равно количеству разрушаемой пены, называется критической J°.

Очевидно, что объем слоя пены, накопленного за время тушения, равен разности объемов пены, поданной и разрушенной. Соответственно интенсивность накопления пены J(нак) равна J-J°. Отсюда критическая интенсивность подачи раствора равна:

J°=J-J(нак),

Если известен объем пены, накопленный к моменту тушения V(нак), величину J(нак) можно вычислить по формуле

J(нак) = (V(нак)*10 3)/ (jFpK) = (HFp*10 3)/(jFpK) = (H*10 3)/(jK),

Где H – толщина накопленного слоя пены, м; Fp –площадь зеркала жидкости (резервуара), м2; j – время подачи пены, с; К – кратность пены.

Коэффициент 10 3 необходим для перевода м 3 в литры.

Оптимальной является интенсивность подачи J(opt) при которой удельный расход V(уд) раствора пенообразователя минимален. Известно, что зависимость времени тушения пеной от интенсивности подачи раствора может быть описана уравнением общего вида:

J= B*((J+J°)/(J-J°))

Где В – коэффициент, зависящий от вида пенообразователя и параметров пены, имеющей размерность времени.

Так как q(уд) = Jj, можно записать:

V(уд) = BJ*((J+J°)/(J+J°))

Для определения J(opt) строят график зависимости V(уд) = f(J) и находят значение О при котором V(уд) минимален. Коэффициент В можно принять равным 1, так как он влияет на положение минимума.

Практическая часть

    Рассмотрите пример решения задачи

    Составьте алгоритм решения задач

    Самостоятельно решите подобные задачи

Пример: Определить критическую и оптимальную интенсивности подачи раствора пенообразователя по результатам опыта. Пена подавалась в течение 30 с двумя ГПС-200. Площадь резервуара 30 м2. Толщина слоя пены после тушения составила 0,3 м.

Решение:

1. Находим интенсивность подачи раствора:

J=qn/Fp = 2*2/30 = 0.13 л/(с*м 2),

Где q производительность пеногенератора по раствору, л/с; n – число пеногенераторов;

Fp – площадь резервуара, м 2 .

2.Принимая К= 100, определяем интенсивность накопленной пены:

J(нак)=((0,3*103)/(30*100))=0,1л/(с*м 2 )

3. Находим критическую интенсивность подачи:

J°= 0.13 – 0.1=0.03 л/(с*м 2 ).

4. Строим график V(уд)=f(J). Поскольку из практики известно что J(opt)=(2-3)J, задаем

следующие значения J^ 0.03; 0,04; 0,05; 0,06; 0,07 и 0,08 л(с*м 2 ). Принимаем В=1 с. По

формуле V(уд) = BJ*((J+J°)/(J+J°)) получаем следующие значения V(уд) и для удобства

и их в таблицу.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1.1Определить критическую и оптимальную интенсивности подачи раствора

пенообразователя по результатам опыта. Пена подавалась в течение 60 с тремя ГПС-

200. Площадь резервуара 70 м 2 . Толщина слоя пены после тушения составила 0,4 м.

1.2Определить критическую и оптимальную интенсивности подачи раствора

пенообразователя по результатам опыта. Пена подавалась в течение 50 с двумя ГПС-

600. Площадь резервуара 100 м 2 . Толщина слоя пены после тушения составила 0,3 м.

Условия выполнения задания

1. Место (время) выполнения задания: задание выполняется в аудиторное время

2. Максимальное время выполнения задания: ____90 ______ мин.

3. Вы можете воспользоваться учебником, алгоритмом решения задач

Шкала оценки образовательных достижений:

Критерии:

Умение следовать алгоритму действий;

Умение выбрать формулы для решения задачи;

Умение правильно производить математические расчёты;

Правильность оформления работы.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если выполнены все вышеперечисленные требования к решению расчётной задачи

Оценка «хорошо» выставляется обучающемуся, если допущены незначительные погрешности в оформлении и при математических расчётах.

Оценка «удовлетворительно» выставляется обучающемуся, если допущены незначительные погрешности в алгоритме действий при решении задачи.

Оценка «неудовлетворительно» выставляется обучающемуся, если задача не решена.



Понравилась статья? Поделиться с друзьями: