Методы обеспечения комфортных микроклиматических условий. Методы обеспечения комфортных климатических условий в помещениях. Допустимые микроклиматические условия

Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха в помещениях является вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего.

По способу перемещения воздуха различают системы естественной и механической вентиляции. Система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давления снаружи и внутри здания, называется естественной вентиляцией.

Неорганизованная естественная вентиляция - инфильтрация, или естественное проветривание, осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давления снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов: силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация может быть значительной для жилых зданий и достигать 0,5-0,75 объема помещения в час, а для промышленных предприятий - до 1-1,5 ч.

Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная вентиляция (аэрация).

Аэрацией называется организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг в зависимости от температуры наружного воздуха, скорости и направления ветра. Как способ вентиляции аэрация нашла широкое применение в промышленных зданиях, характеризующихся технологическими процессами с большими тепловыделениями (прокатных, литейных, кузнечных цехах).

Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и того, что поступающий в помещение воздух не очищается и не охлаждается.

Вентиляция, с помощью которой движение воздуха осуществляется по системам каналов с использованием побудителей, называется механической вентиляцией.

Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия вследствие значительного давления, создаваемого вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; возможность подвергать вводимый в помещение воздух предварительной очистке или увлажнению, подогреву или охлаждению; возможность организовать оптимальное воздухораспределение с подачей воздуха непосредственно к рабочим местам; возможность улавливать вредные выделения непосредственно в местах их образования и предотвращать их распространение по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу. К недостаткам механической вентиляции следует отнести значительную стоимость сооружения и ее эксплуатации и необходимость проведения мероприятий но борьбе с шумом.

Системы механической вентиляции подразделяются на общественные, местные, смешанные, аварийные и системы кондиционирования.

Общеобменная вентиляция предназначена для ассимиляции избыточной теплоты, влаги и вредных веществ во всем объеме рабочей зоны помещений. Она применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению. Обычно объем воздуха £пр, подаваемого в помещение при общеобменной вентиляции, равен объему воздуха £в, удаляемого из помещения. Однако в ряде случаев возникает необходимость нарушить это равенство (рис. 4.1). Так, в особо чистых производствах, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления р в производственном помещении, что исключает попадание пыли из соседних помещений. В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10-15%.

Рис. 4.1.

Циркуляция воздуха в помещении и соответственно концентрация примесей и распределение параметров микроклимата зависят не только от наличия приточных и вытяжных струй, но и от их взаимного расположения. Различают четыре основные схемы организации воздухообмена при общеобменной вентиляции: сверху вниз (рис. 4.2, я), сверху вверх (рис. 4.2, б); снизу вверх (рис. 4.2, в); снизу вниз (рис. 4.2, г). Кроме этих схем, применяют комбинированные. Наиболее равномерное распределение воздуха достигается в том случае, когда приток равномерен по ширине помещения, а вытяжка сосредоточена.

При организации воздухообмена в помещениях необходимо учитывать и физические свойства вредных паров и газов, и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего - непосредственно в рабочую зону. При выделении газов с плотностью, большей плотности воздуха, из нижней части помещения удаляется 60-70% и из верхней части - 30-40% загрязненного воздуха. В помещениях со значительными выделениями

Рис. 4.2.

влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60% - в рабочую зону и 40% - в верхнюю зону.

По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции (рис. 4.3): приточная, вытяжная, приточно-вытяжная и с системой с рециркуляцией.

По приточной системе воздух подается в помещение после подготовки его в приточной камере. В помещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне.

Установки приточной вентиляции (рис. 4.3, а) обычно составляют из следующих элементов: воздухозаборного устройства / для забора чистого воздуха; воздуховодов 2, по которым воздух подается в помещение, фильтров 3 для очистки воздуха от пыли, калориферов 4, в которых подогревается холодный наружный воздух; побудителя движения 5, увлажнителя-осушителя 6, приточных отверстий или насадков 7, через которые воздух распределяется по помещению.

Рис. 4.3.

а - приточная вентиляция (ПВ); б - вытяжная вентиляция (ВВ); в - приточно-вытяжная вентиляция с рециркуляцией

Воздух из помещения удаляется через неплотности ограждающих конструкций.

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например, для вредных цехов, химических лабораторий.

Установки вытяжной вентиляции (рис. 4.3, б) состоят из вытяжных отверстий или насадков 8, через которые воздух удаляется из помещения; побудителя движения 5, воздуховодов 2; устройств для очистки воздуха от пыли или газов 9, устанавливаемых для защиты атмосферы, и устройства для выброса воздуха 10, которое располагается на 1 - 1,5 м выше конька крыши. Чистый воздух поступает в производственное помещение через неплотности ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция - наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.

В отдельных случаях для сокращения расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией (рис. 4.3, в). В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения II вытяжной системой. Количество свежего и вторичного воздуха регулируют клапанами 11 н 12. Свежая порция воздуха в таких системах обычно составляет 20-10% общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности (см. параграф 3.2 табл. 3.4) и концентрация их в воздухе, подаваемом в помещение, не превышает 30% предельно допустимой концентрации (Спдк)- Применение рециркуляции не допускается в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.

Отдельные установки общеобменной механической вентиляции могут не включать всех указанных выше элементов. Например, приточные системы не всегда оборудуются фильтрами и устройствами для изменения влажности воздуха, а иногда приточные и вытяжные установки могут не иметь сети воздуховодов.

Расчет необходимого воздухообмена при общеобменной вентиляции производят исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена Ка - отношение количества воздуха, поступающего в помещение в единицу времени Ь (м3/ч), к объему вентилируемого помещения V, (м3). При правильно организованной вентиляции кратность воздухообмена должна быть значительно больше единицы.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции применяют в зависимости от объема помещения, приходящегося на одного работающего. Отсутствие вредных выделений - это такое их количество в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. В производственных помещениях с объемом воздуха на каждого работающего Ун1 < 20 м3 расход воздуха на одного работающего Ьх должен быть не менее 30 м3/ч. В помещении с Ки1 = 20-40 м3I, > 20 м2/ч. В помещениях с УпХ > 40 м3 и при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять не менее 60 м3/ч. Необходимый воздухообмен для всего производственного помещения в целом равен

где п - число работающих в данном помещении.

При определении требуемого воздухообмена для борьбы с теплоизбытками составляют баланс явной теплоты помещения, исходя из которого рассчитывается объем воздуха для теплоизбытков Д<2из6:

где рдр - плотность приточного воздуха, кг/м; £ух, £пр - температура уходящего и приточного воздуха, °С; ср - удельная теплоемкость, кДж/кг-м3;

где бвр - интенсивность образования вредных веществ, мг/ч; СцдК, С"р - концентрации вредных веществ в пределах ПДК и в приточном воздухе.

Концентрация вредных веществ в приточном воздухе должна быть по возможности минимальной и не превышать 30% ПДК.

Необходимый воздухообмен для удаления избыточной влаги определяют исходя из материального баланса по влаге и при отсутствии в производственном помещении местных отсосов по формуле

где (гвп - количество водяного пара, выделяющегося в помещение, г/ч; р"р - плотность воздуха, поступающего в помещение, кг/м; йух - допустимое содержание водяного пара в воздухе помещения при нормативной температуре и относительной влажности воздуха, г/кг; с!пр - влагосодержание приточного воздуха, г/кг.

При одновременном выделении в рабочую зону вредных веществ, не обладающих однонаправленным действием на организм человека, например, теплоты и влаги, необходимый воздухообмен оценивают по наибольшему количеству воздуха, полученному в расчетах для каждого вида произведенных выделений.

При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (серный и сернистый ангидрид; оксиды азота совместно с оксидом углерода и др., см. СН 245-71) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций (С,), учитывающих загрязнения воздуха другими веществами. Эти концентрации меньше нормативных СПдК и определяются из уравнения У "" < 1.

С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. Например, улавливание вредных веществ непосредственно у источника возникновения, вентиляции кабин наблюдения и т.д. Наиболее широкое распространение находит местная вытяжная локализующая вентиляция. Основной метод борьбы с вредными выделениями заключается в устройстве и организации отсосов из укрытий.

Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рис. 4.4). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рис. 4.4, а). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зоны, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.

Один из самых простых видов местных отсосов - вытяжной зонт (рис. 4.4, ж). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электрическими и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всех сторон и частично открытыми с одной, двух и трех сторон. Эффективность работы вытяжного зонта зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта не менее 60°.

Отсасывающие панели (рис. 4.4, в) применяют для удаления выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла т.п. Вытяжные шкафы (рис. 4.4, е) - наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.

Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса Р(м2) па скорость воздуха в них. Скорость воздуха в проеме отсоса

Рис. 4.4.

а - укрытие-бокс; б - бортовые отсосы (1 - однобортовой, 2 - двухбортовой); в - боковые отсосы (1 - односторонний, 2 - угловой); г - отсос от рабочих столов; д - отсос витражного типа;

е - вытяжные шкафы (1-е верхним отсосом, 2-е нижним отсосом, 3 - с комбинированным отсосом); ж - вытяжные зонты (1 - прямой, 2 - наклонный)

V (м/с) зависит от класса опасности вещества и типа воздухоприемника местной вентиляции (г) = 0,5^-5 м/с).

Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.

Аварийная вентиляция предусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большого количества вредных или взрывоопасных веществ. Производительность аварийной вентиляции определяют в соответствии с требованиями нормативных документов в технологической части проекта. Если такие документы отсутствуют, то производительность аварийной вентиляции принимается такой, чтобы она вместе с основной вентиляции включалась автоматически при достижении ПДК вредных выделений или при остановке одной из систем общеобменной или местной вентиляции. Выброс воздуха аварийных систем должен осуществляться с учетом возможности максимального рассеивания вредных и взрывоопасных веществ в атмосфере.

Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции - кондиционирование воздуха. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие строго определенные параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т.п.

Кондиционеры могут быть местными (для обслуживания отдельных помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рис. 4.5.

Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру I, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где проходит специальную обработку (промывку воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру III (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру II охлажденной (артезианской) воды и, главным образом, в итоге работы специальных холодильных машин.

Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и необходимо во многих высокотехнологических производствах, поэтому оно в последние годы находит все более широкое применение на промышленных предприятиях. Неблагоприятное влияние избытка или недостатка тепла может быть в значительной мере снижено или исключено совершенствованием техпроцессов, применением автоматизации и механизации, а также использованием ряда санитарно-технических и организационных мероприятий: локализация тепловыделений, теплоизоляция поверхностей нагрева, экранирование, воздушное и водовоздушное душирование, воздушные оазисы, воздушные завесы, рациональный режим труда и отдыха.

В любом случае мероприятия должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).

Рис. 4.5.

1 - заборный воздуховод; 2 - фильтр; 3 - соединительный воздуховод; 4 - калорифер; 5 - форсунки увлажнителя воздуха; 6 - каплеуловитель; 7 - калорифер второй ступени; 8 - вентилятор; 9 - отводной воздуховод

При нефиксированных рабочих местах и работе на открытом воздухе в холодных климатических условиях организуют специальные помещения для обогревания. При неблагоприятных метеорологических условиях (температуре воздуха -10 °С и ниже) обязательны перерывы на обогрев продолжительностью 10-15 мин каждый час.

При температуре наружного воздуха (-30)-(-45) °С 15-минутные перерывы на отдых организуются каждые 60 мин от начала рабочей смены и после обеда, а затем каждые 45 мин работы. В помещения для обогрева необходимо предусматривать возможность питья горячего чая.

Гигиеническое нормирование параметров производственного микроклимата установлено системой стандартов безопасности труда (ГОСТ 12.1.005-88, а также СанПиН 2.2.4.584-96).

Нормируются оптимальные и допустимые параметры микроклимата - температура, относительная влажность и скорость движения воздуха. Значения параметров микроклимата устанавливаются в зависимости от способности человеческого организма к акклиматизации в разное время года и категории работ по уровню энергозатрат.

От периода года зависит способность организма к акклиматизации, следовательно, и значения оптимальных и допустимых параметров. При нормировании различают теплый и холодный период года.

Теплый период года характеризуется среднесуточной температурой наружного воздуха выше +10 °С; холодный период года - равной +10 °С и ниже.

При нормировании параметров микроклимата категорирование работ по тяжести выполнено разграничением на основе общих затрат энергии организмом в единицу времени, которое измеряется в ваттах.

Различаются следующие категории работ:

Легкие физические работы (категории 1а и 16) - все виды деятельности с расходом энергии не более 174 Вт. К категории la (до 139 Вт) относятся работы, производимые сидя и сопровождающиеся незначительным физическим напряжением - ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производстве, в сфере управления и т. п. К категории 16 (140...174 Вт) относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением, - ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т. п.;

Физические работы средней тяжестии (категории На, Пб) - виды деятельности с расходом энергии 175...290 Вт. К категории Па (175...232 Вт) относятся работы, связанные с постоянной ходьбой и перемещением мелких (до 1 кг) изделий, - ряд профессий в механосборочных цехах, прядильно-ткацком производстве и т. п. К категории Пб (233...290 Вт) относятся работы, связанные с ходьбой, перемещением тяжестей до 10 кг, - ряд профессий в механизированных литейных, прокатных, кузнечных, сварочных цехах и т. п.;

Тяжелые физические работы (категория III) - виды деятельности с расходом энергии более 290 Вт - работы, связанные с систематическим физическим напряжением, в частности с постояннным передвижением и переноской значительных (свыше 10 кг) тяжестей (ряд профессий в кузнечных, литейных цехах с ручным трудом и т. п.).

Методы обеспечения комфортных климатических условий в помещениях

Для обеспечения комфортных условий необходимо поддерживать тепловой баланс между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении (температуры, относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, а на уровне допустимых - предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переохлаждения организма.

Основным методом обеспечения требуемых параметров микроклимата и состава воздушной среды является применение систем вентиляции, отопления и кондиционирования воздуха.

Хорошая вентиляция помещения способствует улучшению самочувствия человека. Наоборот, плохая вентиляция приводит к повышенной утомляемости, снижению работоспособности. В жилых, общественных и производственных помещениях в результате жизнедеятельности людей, работы оборудования, приготовления пищи, сгорания природного газа выделяются вредные вещества, влага, теплота. В результате ухудшаются климатические условия, изменяется состав воздушной среды. Поэтому обеспечение хорошей вентиляции, регулярное проветривание помещений, является необходимым условием для обеспечения оптимальных условий для труда человека и сохранения его здоровья.

Наибольшее распространение для обеспечения оптимальных параметров микроклимата получила общеобменная приточно-вытяжная вентиляция. Применяется как механическая, так и естественная вентиляция.

Если в помещении возможно естественное проветривание, а объем помещения, приходящегося на одного человека, не менее 20 м3, производительность вентиляции должна быть не менее 20 м3/ч на одного человека. Если же объем помещения, приходящегося на одного человека менее 20 м3, производительность вентиляции должна быть не менее 30 м3/ч. При невозможности естественного проветривания производительность вентиляции должна быть не менее 60 м3/ч на одного человека.

При выделении в помещении от оборудования и технологических процессов влаги и теплоты производительность вентиляции должна быть увеличена по сравнению с указанными величинами. Необходимая производительность определяется расчетом с учетом количества выделяемой влаги и теплоты.

В жаркое время года, а также в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от печей, раскаленных отливок и других источников тепла, дополнительно применяют воздушное душирование, заключающееся в обдуве ра-ботающего потоком воздуха с целью увеличения интенсивности конвективного теплообмена и отвода теплоты за счет испарения.

Скорость обдува составляет 1 ...3,5 м/с в зависимости от интенсивности теплового потока. Установки воздушного душирования бывают стационарные, когда воздух на рабочее место подается по системе воздуховодов с приточными насадками, и передвижные, в которых используется передвижной вентилятор. Примером передвижного устройства воздушного душирования является бытовой вентилятор, применяемый в жилых и непроизводственных помещениях в жаркую погоду, когда естественная вентиляция не может обеспечить тепловой баланс между человеком и окружающей средой. Воздушные оазисы позволяют улучшить метеорологические условия на ограниченном участке помещения, для чего этот участок со всех сторон отделяется перегородками и заполняется воздухом более прохладным и чистым, чем воздух в остальном помещении. Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота или двери холодным воздухом. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах. Воздух для завесы подается к дверным проемам через специальную щель и выходит с большой скоростью (10...15 м/с) под углом навстречу поступающему снаружи холодному воздуху. Воздух завесы препятствует поступлению холодного воздуха в помещение; проникшая же в помещение часть холодного воздуха подогревается при смешении с более теплым воздухом завесы. Бывают завесы с нижней и боковой подачей воздуха. Примером воздушных завес являются применяемые в холодный период года во входных дверях магазинов, метро, учреждений воздушно-тепловые завесы. Для создания оптимальных метеорологических условий в помещениях применяют кондиционирование воздуха. Кондиционированием воздуха называется автоматическое поддержание в помещениях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность и скорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, называемых кондиционерами. Кондиционеры бывают местными - для обслуживания отдельных помещений, комнат, и центральными - для обслуживания групп помещений, цехов и производств в целом. Сложность кондиционера определяется числом и точностью поддерживаемых в заданном диапазоне параметров. Простейшими кондиционерами являются бытовые кондиционеры, которые можно увидеть встроенными в окна и закрепленными с наружной стороны стен помещений. В холодное время года для поддержания в помещении оптимальной температуры воздуха применяется отопление. Отопление может быть водяным, паровым, электрическим.

Главная > Документ

3.6. МЕТОДЫ ОБЕСПЕЧЕНИЯ КОМФОРТНЫХ КЛИМАТИЧЕСКИХ УСЛОВИЙ В ПОМЕЩЕНИЯХ

Для обеспечения комфортных условий необходимо поддерживать тепловой баланс между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении. Благоприятные условия микроклимата обеспечиваются систе-мами отопления и вентиляции, устройствами кондиционирования воздуха, правильной ориентацией окон по сторонам света и другими средствами. Для отопления жилищ, школ, дошкольных учреждений, боль-ниц и большинства общественных зданий наиболее используе-мым является центральное водяное отопление. Схема такого ото-пления включает: генератор тепла (котел, бойлер), разводящие трубы и стояки, обогревательные приборы (радиаторы). Во избе-жание ожогов и возгорания пыли температура поверхности ради-аторов (батарей) водяного отопления не должна превышать 80 °С. Тепло от радиаторов отдается в помещение путем контакта их поверхности с воздухом. Поэтому подобное отопление называется конвекционным. Паровое отопление из-за высокой температуры поверхности ра-диаторов не пригодно для обогрева жилых и общественных зданий. В последние годы все чаще используется центральное панельно-лучистое отопление. При этой системе отопительные приборы пред-ставляют собой систему нагревательных труб в бетонных панелях, которые могут встраиваться в стены, пол или потолок. Через тру-бы пропускают горячую воду. Панели образуют большую теплоизлучающую поверхность, отдающую лучистое тепло всем другим поверхностям в помеще-нии. Панели в стенах нагревают до 30…45 °С, в полу - до 24…26 °С, в потолке до 24…28 °С. При панельном отоплении обеспе-чивается равномерная температура воздуха по вертикали и гори-зонтали. Лучистое отопление качественно изменяет теплообмен челове-ка: уменьшаются потери излучением и соответственно могут по-выситься потери конвекцией. Благодаря этому тепловой комфорт достигается при более низких температурах воздуха (18 °С), что позволяет лучше и чаще проветривать помещения. Лучистое тепло проникает в глубь тканей и, воздействуя непосредственно на их клеточные элементы, благоприятно влияет на обменные процес-сы в организме. Летом лучистая система отопления может использоваться для пропускания холодной воды для радиационного охлаждения по-мещения. Все большее применение находят централизованные и локаль-ные системы кондиционирования. Автономные кондиционеры поз-воляют в помещениях объемом до 150…180 м 3 поддерживать тем-пературу воздуха в пределах 18…25 °С, относительную влажность 40…60 %, скорость движения воздуха - до 0,3 м/с. В закрытых помещениях различного типа во время пребывания там людей меняются химический состав и физические свойства воздуха: нарастает количество углекислого газа, водяных паров тяжелых ионов, уменьшается содержание кислорода, легких ионов, повышаются температура, запыленность и бактериальная загряз-ненность, появляются органические примеси. Для улучшения мик-роклимата и сохранения чистоты воздуха важнейшим средством является вентиляция и естественное проветривание (аэрация) по-мещений. В производственных помещениях, зрелищных учреждениях и других используется механическая приточно-вытяжная вентиляция. Системы вентиляции и кондиционирования производственных помещений описаны в главе 6. Большое значение для обеспечения необходимого теплового режима в жилых помещениях имеет правильная ориентация окон Сторонам света. Северные ориентации (50…310°) не рекомендуются во всех климатических районах. Западная и юго-западная ориентация окон (200…290°) не допускается в условиях жаркого и теплового климата из-за возможности перегрева. Восточная, юго-восточная и южная ориентация (70 … 200°) могут использоваться во всех климатических районах. На температуру в помещениях большое влияние оказывает ветер, поэтому на Севере расположение зданий определяется направлением господствующих ветров. Для уменьшения их охлаждающего действия рекомендуется располагать в сторону господствующих холодных ветров глухие торцовые стены, а не длинную ось зданий. В районах с жарким климатом актуальной является борьба с перегревом помещений. Для этого используется правильная ориентация окон по сторонам света. Ориентация окон на юго-запад рекомендуется в условиях жаркого и теплого климата из-за перегрева помещений. Наиболее благоприятной является ориентация окон на восток, юго-восток и юг. Защита помещений от солнечной радиации и перегрева достигается также за счет: увеличения толщины сильно инсолируемых стен до 0,7 м и
более; увеличения высоты помещений - до 3,2 м; окраски наружных стен в белый цвет для лучшего отражения солнечных лучей; устройством над окнами козырьков, ставен, жалюзей и других солнцезащитных сооружений. Контрольные вопросы

    Источники поступления теплоты в производственное помещение. За счет каких механизмов осуществляется обмен теплотой между человеком и окружающей средой? Объясните сущность этих механизмов. Что понимается под микроклиматом? Как параметры окружающей среды влияют на теплоотдачу организма человека? Что такое комфортные и дискомфортные условия? Какая разница между субъективной и объективной оценкой микроклимата? Принципы обеспечения комфортных микроклиматических условий. Как нормируются параметры микроклимата? Какие методы защиты применяются от солнечной радиации? Какой показатель используется для оценки микроклимата в помещениях с нагревающим микроклиматом? Виды производственного микроклимата. Каковы механизмы терморегуляции организма человека?
13. От чего зависят оптимальные и допустимые параметры микроклимата? 14. Методы обеспечения комфортных микроклиматических условий.

ВРЕДНЫЕ ВЕЩЕСТВА В ПРОМЫШЛЕННОСТИ

4.1. КЛАССИФИКАЦИИ ПРОМЫШЛЕННЫХ ЯДОВ

В народном хозяйстве промышленно развитых стан мира используются более 50 тысяч разнообразных по строению и физико-химическим свойствам химических веществ, с которыми контактируют работники, в качестве исходных, промежуточных, побочных или конечных продуктов в форме газов, паров или жидкостей, а также пылей, дымов, туманов. Это неорганические, органические и элементоорганические соединения. Из неорганических соединений наиболее распространенными являются металлы (ртуть, свинец, олово, кадмий, хром, никель, марганец, ванадий, алюминий, бериллий и др.) и их соединения, галогены (фтор, хлор, бром, йод), сера и ее соединения (сероуглерод, сернистый ангидрид), соединения азота (аммиак, гидразин, окислы азота), фосфор и его соединения, углерод и его соединения. Органические соединения, имеющие промышленное значение, весьма разнообразны и относятся к различным классам и группам веществ. Наиболее часто воздушная среда производственных помещений загрязняется алифатическими и ароматическими углеводородами, такими как: метан, пропан, этилен, пропилен, толуол, ксилол, стирол и их галогенопроизводные (четыреххлористый углерод, хлорбензол, хлорированные нафталины и др.). Почти все химические вещества, встречающиеся в процессе трудовой деятельности человека в промышленности и оказывающие, в случае несоблюдения правил техники безопасности и гигиены труда, вредное действие на работающих людей, являются промышленными ядами. Яд – это химический компонент среды обитания, поступающий в количестве (реже - качестве), не соответствующем врожденным приобретенным свойствам организма, и поэтому несовместимый с его жизнью. Важнейшей характеристикой химического вещества является степень его токсичности (или ядовитости). Токсичность - это мера несовместимости вещества с жизнью.Основным критерием токсичности вещества является его предельно допустимая концентрация (ПДК). Предельно допустимая концентрация (ПДК) вредных веществ в воздухе рабочей зоны – это концентра-ции, которые при ежедневной (кроме выходных дней) работе в пределах 8 ч. в день и не более 40 ч. в неделю, в течение всего рабочего стажа не должны вызывать заболеваний или отклонений в состо-янии здоровья, обнаруживаемых современными методами иссле-дований в процессе работы или в отдаленные сроки жизни насто-ящего и последующих поколений. Кроме показателя предельно допустимой концентрации (ПДК), используют и другие показатели токсичности вещества. Средняя смертельная концентрация (ЛК 50), мг/м 3 – концентрация вещества, вызывающая гибель 50 % стандартной группы подопытных животных при двух- четырехчасовом вдыхании. Средняя смертельная доза при нанесении на кожу ЛД 50 , (мг/кг – мг вредного вещества на 1 кг массы животного) – доза вещества, вызывающая гибель 50 % стандартной группы подопытных животных при однократном нанесении на кожу. Средняя смертельная доза при однократном введении в желудок ЛД 50 , (мг/кг – мг вредного вещества на 1 кг массы животного) – доза вещества, вызывающая гибель 50 % стандартной группы подопытных животных при однократном введении в желудок. Токсичность различных химических соединений для одних и тех же видов животных сильно различается. Так, ЛД 50 этилового спирта для белых мышей при введении в желудок составляет 10000 мг/кг массы тела, a ЛД 50 диоксина при том же пути поступления в орга-низм белых мышей составляет 0,001 мг/кг. Поэтому первоначально соз-давались многочисленные классификации химических веществ (в том числе и промышленных) по величине среднесмертельных доз или концентраций для многих видов лабораторных животных (бе-лых мышей, крыс, морских свинок, кроликов и др.) при различ-ных путях поступления в организм (ингаляции, введении в желу-док, подкожно или внутрибрюшинно, аппликации на кожу). Одна-ко в реальных производственных условиях вероятность развития интоксикации тем или иным веществом обусловлена не только его токсичностью, но и возможностью поступления в организм в опас-ных для жизни количествах. Для характеристики указанной особен-ности промышленного яда принято понятие «опасность» - веро-ятность возникновения вредных для здоровья эффектов в реальных условиях производства и применения химических продуктов. Показатели опасности делятся на две группы. К первой группе относятся показатели потенциальной опасности - летучесть вещества или, ее производное, коэффициент возможности ингаляционного отравления (КВИО), растворимость в воде и жирах и другие, например, дисперсность аэрозоля. Эти свойства определяют возможность проникновения яда в организм при вдыхании, попадании на кожу и т. п. Коэффициент возможности ингаляционного отравления КВИО – это отношение максимально достижимой концентрации вредного вещества в воздухе при 20 С к средней смертельной концентрации вещества для мышей. Ко второй группе относятся показатели реальной опасности - многочисленные параметры токсикометрии и их производные: токсичность - величина обратно пропорциональная смертельным дозам (концентрациям), прямо пропорциональна опасности; зона острого действия Z остр - отношение средней смертельной концентрации вредного вещества к минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций; зона хронического действия Z хрон - отношение минимальной (пороговой) концентрации, вызывающей изменение биологических показателей на уровне целостного организма, выходящих за пределы приспособительных физиологических реакций, к минимальной (пороговой) концентрации, вызывающей вредное действие в хроническом эксперименте по 4 ч, пять раз в неделю на протяжении не менее четырех месяцев. Понятие зоны острого действия было предложено одним из основателей российской промышленной токсикологии профессором Н. С. Правдиным. Вещество тем опаснее для развития острого отравления, чем меньше разрыв между концентрациями (дозами), вызывающими начальные признаки отравления, и концентрациями, вызывающими гибель. Что касается зоны хронического действия, связанной с кумулятивными свойствами вещества, то ее величина прямо пропорциональна опасности хронического отравления.

Особое значение имеют пороговые концентрации, вызывающие начальные признаки воздействия ядов на организм. Различают пороги острого и хронического действия, устанавливаемые при однократном или длительном поступлении яда в организм. Наиболее чувствительна к ядам нервная система, поэтому величина пороговых концентраций чаще всего определяется по изменениям безусловной и условной рефлекторной деятельности.

Порог хронического действия Lim cr - минимальная (пороговая) концентрация вредного вещества, вызывающая начальные физиологические изменения, установленные в хроническом эксперименте по 4 ч, пять раз в неделю на протяжении не менее четырех месяцев.

Порог острого действия Lim ос - минимальная (пороговая) концентрация вредного вещества, вызывающая изменение биологических показателей на уровне целостности организма, выходящих за пределы приспособительных физиологических реакций.

Согласно ГОСТ 12.1.007-76 «ССБТ. Вредные вещества. Классификация и общие требования безопасности», вредные вещества по степени воздействия на организм подразделяются на 4 класса опасности: 1-й - чрезвычайно опасные; 2-й - высоко опасные; 3-й - умеренно опасные; 4-й - малоопасные. Класс опасности вредных веществ определяют в зависимости от установленных показателей и норм (табл. 4.1). По характеру воздействия на организм человека вредные вещества разделяют на общетоксические, раздра-жающие, сенсибилизирующие, канцерогенные, мутагенные и вещества, влияю-щие на репродуктивную функцию.

Таблица 4.1.

Классификация вредных веществ по степени токсичности и опасности

Показатели *

Классы опасности (токсичности)

ПДК вредных веществ в воздухе рабочей зоны, мг/м 3
ЛД 50 , мг/кг, при введении в желудок
ЛД 50 , мг/кг, при нанесении на кожу
ЛК 50 , мг/м 3

КВИО

Зона острого действия

Зона хронического действия
* Первые четыре показателя характеризуют степень токсичности, а три последние – степень опасности вещества. Общетоксические химические вещества (уг-леводороды, спирты, анилин, сероводород, синильная кислота и ее соли, соли ртути, хлорированные углеводороды, оксид углерода) вы-зывают расстройства нервной системы, мышечные судороги, нарушают структуру ферментов, влияют на кроветворные органы, взаимодейст-вуют с гемоглобином. Раздражающие вещества (хлор, аммиак, диоксид се-ры, туманы кислот, оксиды азота и др.) воздействуют на слизистые оболочки, верхние и глубокие дыхательные пути. Сенсибилизирующие вещества (органические азокрасители, диметиламиноазобензол и другие антибиотики) повы-шают чувствительность организма к химическим веществам, а в про-изводственных условиях приводят к аллергическим заболеваниям. Канцерогенные вещества (бенз(а)пирен, асбест, нитроазосоединения, ароматические амины и др.) вызывают развитие всех видов раковых заболеваний. Этот процесс может быть отдален от момента воздействия вещества на годы и даже десятилетия. Мутагенные вещества (этиленамин, окись этилена, хлорированные углеводороды, соединения свинца и ртути и др.) ока-зывают воздействия на неполовые (соматические) клетки, входящие в состав всех органов и тканей человека, а также на половые клетки (гаметы). Воздействие мутагенных веществ на соматические клетки вызывают изменения в генотипе человека, контактирующего с этими веществами. Они обнаруживаются в отдаленном периоде жизни и проявляются в преждевременном старении, повышении общей забо-леваемости, злокачественных новообразований. При воздействии на половые клетки мутагенное влияние сказывается на последующее поколение, иногда в очень отдаленные сроки. Химические вещества, влияющие на репродуктивную функцию человека (борная кислота, аммиак, многие химические вещества в больших количествах) вызывают возникновение врожден-ных пороков развития и отклонений от нормальной структуры у потомства, влияют на развитие плода в матке и на послеродовое развитие и здоровье потомства. Для характеристики качественной стороны действия промышленных ядов, оценки их влияния на ту или иную функциональную систему организма предложено несколько классификаций. Примером такой классификации может быть классификация, разработанная Г.Г. Авиловой применительно к условиям хронического воздействия промышлен-ных веществ в минимальных эффективных дозах и концентрациях. В указанной классификации опасность вещества по типу действия оценивается по степени необратимости изменений жизнедеятельности организма: I класс опасности - вещества, оказывающие избира-тельное действие в отдаленный период: бластомогены, мутагены, атеросклеротические вещества, вызывающие склероз органов (пневмосклероз, нейросклероз и др.), гонадотропные, эмбриотропные вещества; II класс опасности - вещества, оказывающие действие на нервную систему: судорожные и нервно-паралитические, нарко-тики, вызывающие поражение паренхиматозных органов, нарко-тики, имеющие чисто наркоти-ческий эффект; III класс опасности - вещества, оказывающие действие на кровь: вызывающие угнете-ние костного мозга, изменяющие гемоглобин, гемолитики; IV класс опасности - раздражающие и едкие вещества: раздражающие слизистые оболоч-ки глаз и верхних дыхательных пу-тей, раздражающие кожу. 4.2. КОМБИНИРОВАННОЕ ДЕЙСТВИЕ ВРЕДНЫХ ВЕЩЕСТВ В производственных условиях работа проводится, как правило, с несколькими химическими веществами, которые могут оказывать комбинированное воздействие на организм человека. Различают несколько возможных эффектов комбинированного воздействия химических веществ на организм человека: 1 - суммация (аддитивность ) - явление суммирования эффектов, индуцированных комбинированным действием. Суммация характерна для веществ однонаправленного действия, когда вещества оказывают одинаковое воздействие на одни и те же системы организма. Например, азота диоксид + серы диоксид; аммиак +формальдегид; азота диоксид +серы диоксид + углерода оксид + фенол; серы диоксид +серная кислота и т.д; 2 - потенцирование (синергизм ) - усиление эффекта воздействия (эффект синергизма больше аддитивного). При потенцировании одно вещество усиливает действие другого вещества. Например, никель усиливает свою токсичность в присутствии меди в 10 раз, алкоголь значительно повышает опасность отравления анилином; 3 - антагонизм - эффект комбинированного воздействия меньше ожидаемого при суммации. При таком комбинированном воздействии одно вещество ослабляет действие другого. 4 - независимое действие – эффект не отличается от изолированного действия каждого из веществ. Это явление характерно для веществ, оказывающих различное влияние на организм и воздействующих на разные органы.
  1. Федеральное агентство воздушного транспорта (1)

    Документ

    В 2010 году на территории подконтрольной Дальневосточному межрегиональному территориальному управлению Федерального агентства воздушного транспорта (далее – Управление) было зарегистрировано 11 эксплуатантов коммерческой гражданской

  2. Федеральное агентство воздушного транспорта (3)

    Документ

    На 31.12. 2011 года на территории, подконтрольной Дальневосточному межрегиональному территориальному управлению воздушного транспорта Федерального агентства воздушного транспорта (далее – Управление), было зарегистрировано 8 эксплуатантов

  3. Федеральное агентство воздушного транспорта федеральное государственное образовательное учреждение высшего профессионального образования «московский государственный технический университет гражданской авиации»

    Документ

    Настоящее пособие к изучению дисциплины "Схемотехника", часть 1 (Ос­новы аналого-дискретной схемотехники) издается в соответствии с учебной программой для всех форм обучения специальности 160905.

  4. Положение о Федеральном агентстве воздушного транспорта

    Документ

    Об утверждении Положения о Федеральном агентстве воздушного транспорта(Постановление Правительства Российской Федерации от 30.07.2004 № 396) С изменениями, внесенными, Постановлением Правительства Российской Федерации от 30.

  5. Минтранс россии южное межрегиональное территориальное управление воздушного транспорта федерального агентства воздушного транспорта (южное мту вт фавт)

    Документ

    1.1. Настоящий должностной регламент разработан в соответствии с Федеральным законом от 27.07.2004 года № 79-ФЗ «О государственной гражданской службе Российской Федерации» (далее - Федеральный закон о гражданской службе), Федеральным

  • Ахмеджанов Р.Р., Белоусов М.В. Медико-биологические основы безопасности жизнедеятельности. Часть 1. Основы токсикологии (Документ)
  • Басуров В.А. Медико-биологические основы безопасности жизнедеятельности (Документ)
  • Иванюков М.И., Алексеев В.С. Основы безопасности жизнедеятельности (Документ)
  • Жилин А.Н., Гафарова К.Я. Оказание первой медицинской помощи при травмах (ушибах, вывихах, переломах). Методические указания к практической работе (Документ)
  • Фролов М.П., Литвинов Е.Н., Смирнов А.Т. и др. Основы безопасности жизнедеятельности. 10 класс (Документ)
  • Белов С.В., Сивков В.П. и др. Учебник по БЖД (Документ)
  • Вангородский С.Н. и др. Основы безопасности жизнедеятельности. 8 класс (Документ)
  • Кирсанов А.И. Теоретические основы безопасности жизнедеятельности (Документ)
  • Смирнов А.Т., Хренников Б.О. Основы безопасности жизнедеятельности (Документ)
  • n1.doc

    Методы обеспечения комфортных климатических условий в помещениях.

    Для обеспечения комфортных условий необходимо поддержи­вать тепловой баланс между выделениями теплоты организмом че­ловека и отдачей тепла окружающей среде. Обеспечить тепловой ба­ланс можно, регулируя значения параметров микроклимата в поме­щении (температуры относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, на уровне допустимых – предельно допус­тимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переох­лаждения организма.

    Основным методом обеспечения требуемых параметров микро­климата и состава воздушной среды является применение систем вентиляции, отопления и кондиционирования воздуха.

    Хорошая вентиляция помещения способствует улучшению са­мочувствия человека. Наоборот, плохая вентиляция приводит к по­вышенной утомляемости, снижению работоспособности. В жилых, общественных и производственных помещениях в результате жиз­недеятельности людей, работы оборудования, приготовления пищи, сгорания природного газа выделяются вредные вещества, влага, теп­лота. В результате ухудшаются климатические условия, изменяется состав воздушной среды. Поэтому обеспечение хорошей вентиля­цией, регулярное проветривание помещений, является необходимым условием для обеспечения оптимальных условий для труда человека и сохранения его здоровья.

    Наибольшее распространение для обеспечения оптимальных параметров микроклимата получила обще-обменная приточно-вытяжная вентиляция. Применяется как механическая, так и естественная вентиляция.

    Если в помещении возможно естественное проветривание, а объем помещения, приходящегося на одного человека, не менее 20м 3 , производительность вентиляции должна быть не менее 20м 3 /ч на одного человека. Если же объем помещения, приходяще­гося на одного человека менее 20м 3 , производительность вентиля­ции должна быть не менее 30м 3 /ч. При невозможности естественного проветривания производительность вентиляции должна быть не менее 60м 3 /ч на одного человека.

    При выделении в помещении от оборудования и технологиче­ских процессов влаги и теплоты производительность вентиляции должна быть увеличена по сравнению с указанными величинами. Необходимая производительность определяется расчетом с учетом количества выделяемой влаги и теплоты.

    В жаркое время года, а также в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от пе­чей, раскаленных отливок и других источников тепла, дополнительно применяют воздушное душирование , заключающееся в обдуве работающего потоком воздуха с целью увеличения интенсивности конвективного теплообмена и отвода теплоты за счет испарения.

    10.2. Виброакустические колебания.

    Виброакустические колебания – это упругие колебания твердых тел, газов и жидкостей, возникающие в рабочей зоне при работе тех­нологического оборудования, движении технологических транспорт­ных средств, выполнении разнообразных технологических операций.

    10.2.1. Вибрация. 35

    Вибрация – это малые механические колебания, возникающие в упругих телах.

    Источниками вибрации могут являться:


    1. возвратно-поступательные движущиеся системы – кривошипношатунные механизмы, перфораторы, вибротрамбовки, виброфармовочные машины и др.;

    2. неуравновешенные вращающиеся массы – режущий инструмент, дрели, шлифовальные машины, технологическое оборудование;

    3. ударное взаимодействие сопрягаемых деталей – зубчатые передачи, подшипниковые узлы;

    4. оборудование и инструмент, использующие в технологических целях ударное воздействие на обрабатываемый матери­ал – рубильные и отбойные молотки, прессы, инструмент ис­пользуемый в клепке, чеканке и т. д.
    Область распространения вибрации называется вибрационной зоной.
    Параметры, характеризующие вибрацию .

    Вибрация характеризуется скоростью (v , м/с) и ускорением (а, м/с 2) колеблющейся твер­дой поверхности. Обычно эти параметры называют виброскоростью и виброускорением.

    Величины виброскорости и виброускорения, с которыми приходится иметь дело человеку, изменяются в очень широком диапазоне. Оперировать с цифрами большого диапазона очень неудобно. Кроме того, органы человека реагируют не на абсолютное изменение интенсивности раздражителя, а на его отно­сительное изменение. В соответствии с законом Вебера-Фехнера, ощущения человека, возникающие при различного рода раз­дражениях, в частности вибрации, пропорциональны логарифму количества энергии раздражителя. Поэтому в практику введены логарифмические величины – уровни виброскорости и виброускорения :

    Измеряются уровни в специальных единицах – децибелах (ДБ). За пороговые значения виброскорости и виброускорения приняты стандартизованные в международном масштабе величины:

    Важной характеристикой вибрации является его частота (f) – количество колебаний в единицу времени. Частота измеряется в герцах (Гц, 1/с) – количестве колебаний в секунду. Частоты про­изводственных вибраций изменяются в широком диапазоне: от 0,5 до 8000 Гц. Время, в течение которого происходит одно коле­бание, называется периодом колебания Т (с): Т= 1/f. Максималь­ное расстояние, на которое перемешается любая точка вибрирующего тела, называется амплитудой или амплитудой виброперемещения А (м). Для гармонических колебаний связь между виброперемещением, виброскоростью и виброускорением выра­жается формулами

    Вибрация может характеризоваться одной или несколькими час­тотами (дискретный спектр) или широким набором частот (непре­рывный спектр). Спектр частот разбивается на частотные полосы (октавные диапазоны). В октавном диапазоне верхняя граничная ча­стота f 1 вдвое больше нижней граничной частоты f 2 , т.е. f 1 /f 2 =2. Октавная полоса характеризуется ее среднегеометрической частотой.

    Среднегеометрические частоты октавных полос частот вибрации стандартизованы

    И составляют: 1, 2, 4, 8, 16, 31,5, 63, 125, 250, 500, 1000 Гц. Из опреде­ления октавы по среднегеометрическому значению ее частоты можно определить нижнее и верхнее значения октавной полосы частот.

    Классификация вибраций .

    Производственную вибра­цию классифицируют по следующим признакам:


    1. способ передачи вибрации;

    2. направление действия вибрации;

    3. временная характеристика вибрации;

    4. характер спектра вибрации;

    5. источник возникновения вибрации.
    По способу передачи вибрацию подразделяют на общую и локаль­ную. Общая вибрация передается через опорные поверхности на все тело сидящего или стоящего человека. Локальная вибрация переда­ется на руки или отдельные участки тела человека, контактирующие с вибрирующим инструментом или вибрирующими поверхностями технологического оборудования.

    По направлению действии вибрация подразделяется на:


    1. вертикальную вибрацию;

    2. горизонтальную вибрацию – от спины к груди;

    3. горизонтальную вибрацию – от правого плеча к левому плечу.
    Направление действия вертикальной и горизонтальной вибра­ции на человека представлено на рис. 12.

    По временным характеристикам вибрации подразделяются на:


    1. постоянные вибрации, для которых величина виброскорости изменяется не более чем на 6дБ;

    2. непостоянные вибрации, для которых величина виброскорости изменяется не менее чем на 6дБ; при этом непостоян­ные вибрации дополнительно различаются на колеблющиеся, для которых уровень виброскорости изменяется во времени непрерывно; прерывистые, когда контакт человека с вибрирующей поверхностью прерывается, причем длительность ин­тервалов, в течение которых имеет место контакт с вибрацией, не превышает 1с; импульсные состоящие из одного или нескольких вибрационных воздействий, каждый длитель­ностью менее 1 с.

    Рис. 12. Направление координат осей при действии общей вибрации: а положение стоя; б положение сидя; ось zq вертикальная, перпендикулярная опорной поверхности; ось ао – горизонтальная от спины и груди; ось yq горизонтальная от правого плеча к левому.
    По спектру вибрации подразделяются на:


    1. узкополосные, у которых уровни виброскорости на отдельных частотах или диапазонах частот более чем на 15 дБ превышают значения в соседних диапазонах;

    2. широкополосные, у которых отсутствуют выраженные частоты или узкие диапазоны частот, на которых уровни виброскорости превышают более чем на 15 дБ уровни соседних частот.
    Кроме того, по частотному спектру вибрации подразделяют на: низкочастотную (f сг = 8, 16 Гц для локальной вибрации и 1,4 Гц для общей вибрации); среднечастотную (f сг = 31,5, 63 Гц для локальной и 8,16 Гц для общей); высокочастотную (f CT = 125, 250, 500, 1000 Гц для локальной и 31, 5, 63 Гц – для общей).

    По источнику возникновения общая вибрация подразделяется на несколько категорий:


    1. категория 1 – транспортная вибрация, воздействующая на человека на рабочих местах транспортных средств при их движении по местности;

    2. категория 2 – транспортно-технологическая вибрация, воздействующая на человека на рабочих местах машин с ограниченной зоной перемещения при их перемещении по специально подготовленным поверхностям производственных помещений, промышленных площадок;

    3. категория 3 – технологическая вибрация, воздействующая на человека на рабочих местах стационарных машин и технологического оборудования или передающаяся на рабочие места, не имеющие источников вибрации.
    Воздействие вибрации на организм человека.

    Вибрация относится к вредным факторам, обладающим высокой биологической актив­ностью. Действие вибрации на человека зависит от частоты и уров­ня вибрации, продолжительности воздействия, места приложения вибрации, направления оси вибрационного воздействия, индивидуальных особенностей организма человека воспринимать вибрацию, условий возникновения резонанса и ряда других условий.

    Естественными источниками вибрации являются землетрясе­ния, извержения вулканов, штормы и т.п. Искусственные источники вибрации – различные механизмы на производст­ве, особенно вибрационное оборудо­вание и виброинструменты, тран­спортные средства, акустические си­стемы, различные механические уста­новки и т.д. Причинами вибрации в этих устройствах могут быть возвратно-поступательные движения элементов, биения при вращении несбалансиро­ванных масс, удары и трение рабочих органов станков по обрабатываемым деталям, пульсация отработанного воздуха в пневмоинструментах, вихреобразования в ракетных двигателях, пульсация давления в камерах сгорания, общие сотрясении при движении транспорта по неровному пути и. т. д. Передаваясь через арматуру, перекрытия и фундаменты здании, через почву, воду и атмосферу, вибрации могут распространяться на значи­тельные расстояния. Достигнув ка­кого-либо участка тела человека, вибрация в зависимости от частоты, площади контакта с источником колебаний, позы и т.д. может распространяться на отдельные участки (локальная вибрация) или на все тело (общая вибрация).

    Биологический эффект действия вибрации опреде­ляется локальной интенсивностью энергии колебаний, непосредственно связанной с величиной возникающих в тканях переменных напряжений (сжатие и растяжение, сдвиг, круче­ние и изгиб), и проявляется на всех структурных уровнях организма.

    Вибрация облегчает циркуляцию жидкости, может вызывать распад молекул или молекулярных комплексов в клеточной протоплазме, повышает сорбционные свойства протоплазмы, интенсифицирует ферментативные реакции, увеличивает проницаемость клеточных мембран, способна вызывать перестройки в хромосомном аппарате клеток и т.п.

    Помимо прямого механического воздействия, вибрация может вызывать в целом организме опосредованные эффекты за счет вовлечения в реак­цию центральной нервной системы, вегетативной нервной и эндокринной систем.

    Умеренные дозы невысокой по интенсивности вибрации оказывают стимули­рующий эффект на центральную нервную систему, повы­шают лабильность нервно-мышечного аппарата, интенсифицируют окис­лительно-восстановительные процес­сы, деятельность системы гипофиз – кора надпочечников, щитовидной же­лезы и т.д. Положительный эффект действия умеренных доз вибрации позво­ляет использовать ее для лечения ряда внутренних, нервных и дру­гих заболеваний.

    Увеличение дозы вибрации ведет к прог­рессивным функциональным и мор­фологическим нарушениям в орга­низме.

    При локальной вибрации в первую очередь страдает регуля­ция тонуса периферических крове­носных сосудов. Прямые механиче­ские и рефлекторные раздражения гладкомышечных клеток сосудов при­водят к ангиоспазмам. Локальные изменения гемодинамики в перифе­рической зоне сердечно-сосудистой системы вызывают компенсаторно-приспособительные реакции всех ос­тальных ее участков. Раздражение околососудистых нервных сплетений, приводящее к нарушению трофики, и механическое повреждение нервных окончаний или стволов при вибрации приводят к дальнейшему нарушению вазомоторной координации.

    При локальной вибрации возникают пато­логические изменения в нервно-мы­шечном аппарате: снижается электровозбудимость и лабильность мышц и периферических нервов, ослабля­ются проприоцептивные и миостатические рефлексы, усиливается био­электрическая активность в покоящейся мышце, нарушается двига­тельная координация. Считают, что эти нарушения вызываются воз­никновением в ц.н.с. очагов воз­буждения доминантного типа, которые при хроническом подкреплении пе­реходят в стойкую патологическую форму. У людей, длительно работаю­щих с виброинструментами, сни­жается сила, тонус и выносливость мышц, в мышечной ткани возникают очаги уплотнений, болезненные тяжи, развивается атрофия.

    Общая вибрация вызывает аналогич­ные расстройства во всей двигатель­ной сфере организма, обусловливае­мые как механическими травмами, так и рефлекторными изменениями трофики мышечной ткани, периферических нервных окончаний и стволов. При воздействии общей В. особенно сильно страдает центральная нервная система, так как она оказывается под влиянием мощных афферентных потоков с огромного количества механорецепторных структур. При этом снижается амплитуда ЭЭГ, наступает депрессия б-ритма, становится выраженным или доминирующим в-ритм, иногда появляются, острые волны, в коре головного мозга начинают преобла­дать тормозные процессы, наруша­ются нормальные корково-подкорковые взаимоотношения, возникают вегетативные дисфункции. В резуль­тате общее физическое и психическое состоя­ние организма ухудшается, что мо­жет выражаться в утомлении, деп­рессии или раздражительности, го­ловных болях и других нервных расстройствах вплоть до устойчивых неврозов.

    Вибрация может воздействовать на все сенсорные системы. При локальной вибрации наступает снижение тактильной, температурной, болевой, вибрацион­ной и проприоцептивной чувстви­тельности. При общей вибрации снижается острота зрения, уменьшается поле зрения, светочувствительность глаза, увеличивается слепое пятно; ухудшается восприятие звуков, особенно низкочастотных, нарушается деятель­ность вестибулярного аппарата. Счи­тают, что эти нарушения обусловле­ны адаптацией рецепторов, возникновением охранительного торможения в корковых отделах анализаторов, нарушениями кровоснабжения пери­ферических нервов и трофики сенсорных органов из-за вегетативных дисфункций.

    Из-за стрессового характера дейст­вия вибрации происходит нарушение системы нейрогуморальной регуляции, а также и обменных процессов, функции пищеварительной системы, печени, почек, половых органов и т.д. Как механический фактор, вибрация вызывает нарушение гидродинамиче­ского баланса в тканях внутренних органов, увеличение общих энерге­тических затрат организма с соот­ветствующими сдвигами окислитель­ных процессов, нарушения со сто­роны дыхательного и голосового аппарата, травмы из-за смещений внутренних органов и систем и т.д. При длительном воз­действии вибрации у человека развивается вибрационная болезнь .

    Хроническое воздействие вибрации (данные экспериментов на животных) вы­зывает прогрессирующие гистологические, гистохимические и биохимические изменения в различных органах и тканях организма: отеки и кровоизлия­ния в головном и спинном мозге, которые сопровождаются нарушениями структур нейронов, нервных ство­лов; дистрофические и некробиотические изменения нейронов в мозге с пролиферацией глиальных и гистиоцитарных клеток; исчезновение поперечной исперченности, атрофия и разрывы мышечных волокон, раз­растание соединительной ткани с замещением мышечных волокон; кро­воизлияния в барабанной полости, полукружных каналах и перилимфатическом пространстве; отеки, крово­излияния и дистрофические измене­ния в паренхиматозных тканях; на­рушения морфологического и биохимического состава крови, активности и распределения ферментов и т.д.
    Гигиена труда в условиях вибрации.

    Как физический фактор производственной среды, вибрация встречается в металлообра­батывающей, горнодобывающей, ме­таллургической, машиностроитель­ной, строительной, авиа- и судострои­тельной и многих других отраслях народного хозяйства. Вибрация является основным технологическим фактором при виброуплотнении, формовании, прессовании, вибрационном бурении, рыхлении, резании горных пород и грунтов, вибротранспортировке и т.д. Вибрация может быть сопутствующим фак­тором при работе сельскохозяйствен­ной и лесозаготовительной техники, погрузочных машин, на транспорте, в текстильном производстве и при ра­боте ручных машин.

    Виброопасными машинами явля­ются: клепальные, рубильные, отбойные молотки, бурильные перфо­раторы, бетоноломы, трамбовки, гайковерты, поверхностные и глубинные ручные вибраторы, шлифовальные машины, дрели, горные сверла, пилы бензомоторные и электропилы и многие другие.

    Сложное колебательное движение, возникающее в результате работы машин, складывается из колебаний взаимодействующих между собой ча­стей оборудования, обрабатываемого изделия и т.д. Вибрации ручных машин непрерывнофлюктуируют, что обусловлено неоднородностью об­рабатываемого объекта, изменением силы нажима, давления воздуха в сети и т.п. Вибрация станков и агрегатов носит более стационарный характер, иее характеристика зависит главным образом от числа оборотов двигателя, харак­тера установки на фундаменте, нали­чия резонансных явлений. Боль­шинство машин и оборудования со­здает широкополосную вибрацию, спектр которой включает частоты от инфразвуковых (ниже 16 Гц), обусловленных числом ударов ударника или числом оборотов двигателя, до высоких зву­ковых частот порядка 10-15 кГц. Вибрация, передаваемая через руки рабо­тающего, определяется как местная, или локальная. Вибрация рабочего места (скамьи, обрабатываемого изделия, пола, на котором находится рабочий) определяется как общая. Часто имеет место смешанное воздействие общей и местной вибрации с преобладанием одного из этих типов колебаний (например, работа ручными машинами, вибро­уплотнение бетона). Выделяются три основных направления общей вибрации: на­правление «зет» (z) - стопа, голова; направление «икс» (х) - спина, грудь и наоборот; направление «игрек» (у) – слева направо.

    На производствах, где применя­ются машины и оборудование, создающие вибрацию, ее воздействие на организм усугубляется тем, что она сочета­ется с рядом других факторов окру­жающей среды. К ним относятся: шум высокой интенсивности, неблагопри­ятные метеорологические условия, значительная запыленность воздуха, повышенное и пониженное атмосфер­ное давление.

    Работа с вибрирующим оборудо­ванием часто требует больших физических усилий.

    Вибрационная болезнь (син.: псевдо-Рейно болезнь, синдром бе­лых пальцев, сосудоспастическая бо­лезнь руки от травм) – профессио­нальное заболевание, вызванное дей­ствием вибрации. Впервые вибрация была описана Лоригой (G.Loriga) в 1911 г. В 1917 г. Коттингем (Cottinghem) и в 1918 г. Хамилтон (A.Hamilton) описали случаи заболевания у работающих с пневматическими отбойными молотками, сопровождав­шиеся побелением пальцев и выра­женными в них болевыми ощуще­ниями. В 1924 г. М.Е.Маршак наблюдал аналогичные расстройства у работающих с ручным механизиро­ванным инструментом. В этот период в СССР появляются работы, в которых описывается развитие ангиоспастических явлений на пальцах рук у ра­бочих других профессий, но контак­тирующих с вибрирующим оборудо­ванием. Результаты клинических наблюдений показали, что при дан­ной патологии имеет место поражение функций многих органов и систем организма.

    В 1955 г. эта патология получила название «вибрационная болезнь».

    Основным фактором, приводящим к развитию заболевания, является вибрация. Выраженность и вре­мя развития заболевания опреде­ляются областью частот и количест­вом колебательной энергии, пере­даваемой всему человеческому телу (общая вибрация) или ограниченному участку его (локальная вибрация), а также факторами, способствую­щими развитию вибрационной болезни: возвратным ударом от ручного инструмента, вы­нужденным положением тела, охлаж­дением, шумом.

    Патогенез . В основе вибрационной болезни лежит сложный механизм нервных и реф­лекторных нарушений, которые при­водят к развитию очагов застойного возбуждения и к стойким последую­щим изменениям, как в рецепторном аппарате, так и в различных отделах центральной нервной системы (головном и спинном мозге, симпатических ганглиях). Сущест­венную роль в патогенезе вибрационной болезни иг­рают также специфические и неспецифические реакции, отражающие адаптационно-компенсаторные про­цессы организма. Полагают, что вибрационная болезнь представляет собой своеобразный ангионевроз, при котором наблюдается спазм мелких и более крупных сосудов. Существует предположение, что ангиоспастический синдром при вибрационной болезни связан с поражением плас­тинчатых телец (Фатера-Пачини).

    Патологическая анатомия вибрационной болезни изучена недостаточно. В артериях находят изменения, подобные тем, которые имеют место при облитерирующем эндартерните. Воз­можны трофические изменения кожи, ногтей вплоть до развития гангрены пальцев кистей, стоп. Возникает атрофия мышц рук и плечевого пояса (особенно мышц предплечья, подлопаточной области, дельтовидной и ромбовидной мышц). В спинном мозге – дистрофические изменения нервных клеток, мелкие кровоизлия­ния, некрозы, а в периферических нервах – периаксональное сегментарное поражение и валлеровское перерождение, в нервных волокнах кожи появляются четковидные аргентофильные выбухания. В костно-суставном аппарате верхней конечности – асептические некрозы суставных отделов костей, остеопороз, деформирующий артроз, остеохондропатии, остеофиты, что является отражением атрофических, дистрофи­ческих, некротических и регене­раторных процессов в хрящах, су­ставных капсулах, костях. В костной ткани наблюдаются очаги уплотне­ния с отложением в них извести. Наиболее часто эта патология об­наруживается в головках пястных костей, в дистальных эпифизах локтевой и лучевой костей, а также в полулунной, головчатой и ладье­видной костях. В сухожилиях мышц иногда отмечается отложение изве­сти и образование костной ткани.

    Клиническая картина . Вибрационная болезнь, вызы­ваемая воздействием локальной виб­рации, по клинической симптома­тике сложна и полиморфна. Заболе­вание развивается постепенно. Боль­ной жалуется на боли в руках, парестезии, иногда на судороги в пальцах, повышенную чувствительность к холоду, раздражительность, бессонницу. Характерны полиневритические и ангиодистонические синдромы с преобладанием симптомов, связанных со спазмом перифе­рических сосудов. Ведущее место занимает сосудистый синдром, сопро­вождающийся приступами побеления пальцев после общего или местного охлаждения организма и напоминающий синдром Рейно, а также наруше­ния чувствительности – вибрационной, болевой, температурной. Сначала нарушается вибрационная чувствительность, затем болевая и температурная. Отмечается гипестезия на пальцах рук и ног по типу перчаток и носков. В выраженных стадиях имеются расстройства чувствительности сегментарного типа (С 3 -D 2)по типу полукуртки или куртки. Сосудистые нарушения проявляются ранее всего в капиллярном и прекапиллярном кровообращении. В тя­желых случаях сосудистые нарушения носят генерализованный характер.

    Наблюдаются явления гиперкератоза на кистях рук, пахи­дермии, стертость кожного рисунка концевых фаланг, отечность паль­цев и их деформация. Могут обнару­живаться и дегенеративно-дистрофи­ческие процессы в костно-суставном аппарате верхних конечностей, а так же изменения в нервно-мышечном аппарате, сопровождающиеся сни­жением мышечной силы, выносли­вости и тонуса мышц. Изменения, как правило, протекают на фоне функциональных нарушений центральной нервной системы, которые клинически проявляются главным образом в виде вегетативной дисфункции и астении. Иногда отмечаются и церебральные ангиоспазмы.

    Вибрационная болезнь, обусловленная воздействием общей вибрации, отличается значи­тельными изменениями центральной нервной системы, протекает с явлениями общей ангиодистонии и полиневротическим синдромом, более выраженным на нижних конеч­ностях. В некоторых случаях (редко) могут отмечаться диэнцефальные рас­стройства, а также симптомы рассе­янного микроочагового поражения стволового отдела, гипоталамической области и больших полушарий го­ловного мозга.

    Из общих симптомов при вибрационной болезни следует отметить изменения на ЭКГ преимущественно экстракардиального характера, функциональные нарушения деятельности пищевари­тельных желез, гастриты, дискинезии кишечника, нарушения обмена веществ (углеводного, белкового, фос­форного, витаминного и др.).

    Выделяют четыре стадии развития вибрационной болезни:

    1 стадия – начальная, малосимптомная – преобладают жалобы на резкие боли и парестезии в руках с лёгкими расстройствами чувствительности в виде гипер- или гипестезии на кончиках пальцев, на небольшое снижение вибрационной чувствительности, склонность к спастическому состоянию артериол;

    2 стадия – умеренно выраженная – более стойкие парестезии, снижение температуры и чувствительности кожи, сужение капилляров, имеются отклонения в функции центральной нервной системе, явления обратимы;

    3 стадия – выраженные вазомоторные и трофи­ческие нарушения, расстройство чув­ствительности, заметные сдвиги в функциональном состоянии центральной нервной системы, изменения стойкие и медленно под­даются лечению;

    4 стадия - гене­рализованная – симптомы резко вы­ражены, сосудистые нарушения на руках и ногах, ангиоспастические кризы коронарных и мозговых со­судов, состояние стойкое, малообратимое.

    Однако выделенные стадии вибрационной болезни не отражают всех ее клинических особенностей, обусловленных раз­личными параметрами вибрации в сочетании с другими неблагоприят­ными воздействиями. Многолетние клинические наблюдения позволяют считать обоснованным выделение се­ми клинических синдромов. В ряде случаев может иметь место сочетание отдельных синдромов или их пере­плетение.

    Ангиодистонический синдром . Наблюдается во всех стадиях вибрационной болезни. Характеризуется веге­тативно-сосудистыми нарушениями на конечностях: похолоданием, циа­нозом, парестезиями, нарушением капиллярного кровообращения.

    Ангиоспастический синд­ром . Характерно наличие су­жения капиллярного русла, при­ступа акроспазма по типу «белых» пальцев со значительным снижением кожной температуры, выраженным нарушением вибрационной чувстви­тельности, нарушением других видов чувствительности по дистальному, а иногда и сегментарному типу.

    Синдром вегетативно­го полиневрита . Отмечают­ся парестезии, боли в конечностях, нарушение всех видов чувствитель­ности по периферическому типу, снижение кожной температуры, по­вышенная потливость ладоней, лом­кость ногтей и др.

    Синдром вегетомиофасцита . Характеризуется наличием дистрофических изменений в мышцах и других тканях опорно-двигательного аппарата, болезненностью мышц при пальпации, нарушением чувствительности по периферическому или сегментарному типу, выраженными болевыми симптомами, нередки сочетающимися с сосудистыми нарушениями.

    Синдром неврита . Отмечаются избирательные амиотрофии в зоне соответствующей периферической иннервации нервного ствола или корешка, нарушение двигательных функций, иногда парезы (например, парезы локтевого нерва у алмазчиков шлифующих стекло на шлифовальных машинках и травмирующих локтевой нерв вследствие длительного упора локтем на твердую поверхность стола).

    Диэнцефальный (гипотамический) синдром с нейро-циркуляторными нарушениями. Характеризуется наличием вегетативно-сосудистых и других пароксизмов, распространяющихся как на периферические отделы, так и на коронарные и церебральные сосуды.

    Вестибулярный синдром. Характеризуется появлением приступов головокружений, часто на стеническом фоне, повышением возбудимости вестибулярного аппарата.

    Диагноз вибрационной болезни ставится на основании данных профессионального анамнеза, санитарно-гигиенической характеристики, условий труда, совокупности клинических проявлений и данных функциональной диагностики: капилляроскопии, артериальной осциллогра­фии, электромиографии, термомет­рии, алгезиметрии, рентгенографии. Дифференцировать заболевание сле­дует с вегетативными полиневри­тами непрофессиональной этиологии, болезнью Рейно, сирингомиелией, миозитами.

    Лечение основывается на комплексной терапии в виде сосудорасширяю­щих и ганглиоблокирующих препа­ратов и применении физиотерапевти­ческих методов. Рекомендуется соче­тать 1% раствор спазмолитика (дифацил) по 10 мл внутримышечно (4-5 инъекций на курс) или 2% раствор мензогексония (1 мл внутримышечно) с малыми дозами центральных холинолитиков – метамизила (0,0005г один раз в день) и аминазина (0,025г один раз в день); внутривенно вводят 0,25% раствор новокаина в сочетании с никотиновой кислотой и вита­мином В. Проводят спинальную блокаду 0,25% раствором дифацила в сочетании с новокаином, инъекции 1% раствора никотиновой кислоты (1 мл), прозерина. Применяют ультрафиолетовое облучение на уровне сегментов С 3 - С 4 и D 5 - D 6 , начиная с 2 -3 биодоз, увеличивая до 3-4; курс 7-8 сеансов. Показано также сана­торно-курортное лечение сероводородными азотно-термальными, ра­доновыми ваннами, грязелечение ап­пликациями (t ° 37-38°); рациональ­ное питание.

    Прогноз в 1 и 2 стадиях заболевания благоприятен, но при условии специального лечения с обязатель­ным переводом на легкие работы. В 3 - 4 стадиях прогноз сомните­лен или неблагоприятен.

    3.4.1. Основные направления обеспечения комфортных условий трудовой деятельности людей

    Решение проблемы безопасности жизнедеятельности невозможно без обеспечения нормальных (комфортных) условий деятельности людей. Поддержание оптимальных условий деятельности и отдыха людей, кроме того, создает предпосылки для их высокопродуктивной профессиональной деятельности.

    Комфортные условия жизнедеятельности в техносфере создаются обеспечением оптимальных параметров освещения, микроклимата и состава воздуха производственных и бытовых помещений.

    Посредством зрения люди воспринимают до 90 % необходимой для работы информации. Хорошая освещенность помещений и рабочих площадок необходима для обеспечения безопасности труда, сохранения здоровья человека и поддержания его высокой работоспособности.

    В комплекс мероприятий, осуществляемых для обеспечения оптимальных параметров производственного освещения, входят:

    1) разработка санитарно-гигиенических требований к производственному освещению;

    2) нормирование и расчет оптимального естественного и искусственного освещения;

    3) устройство и обслуживание осветительных установок;

    4) контроль освещенности рабочих мест и использование средств индивидуальной защиты органов зрения.

    Состояние здоровья человека и его работоспособность в значительной степени зависят также от микроклимата и состава воздуха на рабочих местах. Не имея возможности управлять климатом местности, на которой размещен хозяйственный объект, люди располагают различными системами и средствами регулирования параметров микроклимата в бытовых и производственных помещениях. Основными мероприятиями по созданию комфортных климатических условий и безопасного состава воздуха в помещениях являются:

    1) разработка санитарно-гигиенических требований к параметрам микроклимата и состава воздуха в производственных помещениях;

    2) расчет, проектирование и монтаж систем отопления, вентиляции и кондиционирования воздуха в помещениях;

    3) контроль параметров микроклимата и содержания вредных веществ в воздухе помещений;

    4) использование коллективных и индивидуальных средств защиты от действия тепловых излучений, холода и вредных веществ (пыли, паров и газов).

    Немаловажную роль в обеспечении комфортных условий труда играет обеспечение качественных санитарно-бытовых услуг, т.к. бытовое и медицинское обслуживание, общественное питание, торговля и культурно-массовое обслуживание хозяйственной деятельности людей.

    3.4.2. Классификация производственного освещения и основные санитарно-гигиенические требования к нему

    По виду используемой энергии производственное освещение классифицируется на естественное, искусственное и совмещенное, когда используются вместе естественное и искусственное освещение.

    Естественное освещение помещений прямыми солнечными лучами и рассеянным светом, яркость которых меняется в зависимости от географической широты местности, времени года и суток. Искусственное освещение помещений создается электрическими источниками света. Естественное освещение наиболее благоприятно как для органов зрения, так и для организма человека в целом. Поэтому искусственное и совмещенное освещение производственных помещений применяется только при недостаточности естественного освещения в дневное время и ночью.

    Естественное освещение по расположению световых приемов делится на три вида: боковое, верхнее и комбинированное освещение солнечным светом. Боковое освещение через световые проемы в стенах здания еще подразделяется на одностороннее и двустороннее. Верхнее естественное освещение осуществляется через световые проемы в кровле и перекрытиях здания. Комбинированное - сочетание верхнего и бокового освещения солнечным светом.

    Искусственное освещение по расположению источников света подразделяется на общее, местное и комбинированное. Большинство производственных помещений, в которых производится однотипная работа, оборудуются системами общего искусственного освещения (светильники расположены на потолочных перекрытиях). Различают общее равномерное освещение (когда световой поток светильников распределяется равномерно по всему помещению) и общее локализованное освещение (когда светильники располагаются с учетом расположения рабочих мест). При выполнении точной зрительной работы (токарная, слесарная, контрольная работа и т.д.) наряду с общим освещением применяется местное. Совокупность общего и местного искусственного освещения называется комбинированным. В соответствии с требованиями СНиП применение только одного местного освещения в производственных помещениях не допускается, т.к. при освещении рабочих мест в некоторых участках помещения образуются резкие тени, из-за чего глаза быстро утомляются и создается опасность травматизма людей.

    По функциональному назначению искусственное освещение подразделяется на рабочее, аварийное и специальное (охранное, дежурное, эвакуационное, бактерицидное и др.).

    Рабочее освещение обеспечивает нормальное выполнение производственного процесса, прохода людей, движение транспорта и является обязательным для всех производственных помещений хозяйственного объекта. Аварийное освещение устраивается для продолжения работы в тех случаях, когда происходит внезапное отключение рабочего освещения и может возникнуть опасная ситуация. При аварийном освещении обеспечивается минимально необходимая освещенность рабочих поверхностей (но не менее 5% нормируемой освещенности). Эвакуационное освещение обеспечивает необходимую видимость при выводе людей из производственного помещения при авариях и отключении рабочего освещения. Оно организуется в местах, опасных для прохода людей, на лестничных клетках, вдоль основных проходов в цехах. Охранное освещение устраивается в ночное время вдоль границ территорий, охраняемых специальным персоналом. Сигнальное освещение применяется для обозначения границ опасных зон. Дежурное освещение используется для освещения производственных объектов в нерабочее время.

    Рассмотрим основные требования к производственному освещению. Главной задачей обеспечения оптимальных условий освещения является поддержание на рабочих местах и в производственных помещениях освещенности, соответствующей характеру зрительной работы людей.

    При организации производственного освещения в соответствии с санитарно-гигиеническими требованиями необходимо:

    Использовать необходимый спектральный состав светового потока (приближенный к составу солнечного света или монохроматический свет);

    Обеспечить соответствие освещенности рабочих мест нормативным значениям;

    Обеспечить равномерность освещенности и яркости рабочей поверхности (в пространстве и во времени);

    Не допускать наличия резких теней на рабочих поверхностях и блесткости предметов в пределах рабочей зоны;

    Обеспечить такую направленность светового потока, которая будет способствовать четкому различению людьми рельефности элементов рабочих поверхностей;

    Использовать наиболее долговечные, простые и удобные осветительные установки, отвечающие требованиям электро-, взрыво–безопасности и эстетики.

    3.4.3. Нормирование и расчет оптимального естественного и искусственного освещения

    Производственное освещение нормируется количественными и качественными показателями, которые регламентируются Строительными нормами и правилами (СНиП – 23-05-95) в зависимости от характера зрительной работы, вида освещения, фона и контраста объекта различения с фоном. Характеристика зрительной работы определяется наименьшим размером объекта различения (например, при работе с приборами – толщиной линии градуировки их шкалы). В зависимости от размера объекта различения все виды работ делятся на восемь разрядов, которые, в свою очередь, разделяются на четыре подразряда в зависимости от фона и контраста объекта с фоном. Принято раздельное нормирование для естественного и искусственного освещения.

    Основной нормируемой величиной естественного освещения является относительная величина – коэффициент естественного освещения (е), который зависит от времени суток, метеорологических условий и других причин изменчивости солнечного освещения. Этот коэффициент определяется в процентах из выражения

    е = 100 х Е р /Е н,

    где Е р – освещенность на рабочем месте внутри помещения;

    Е н - одновременная наружная освещенность, создаваемая светом полностью открытого небосвода.

    Гигиенические нормы, приведенные в СНиП, устанавливают требуемое значение коэффициента естественного освещения в зависимости от характеристики зрительной работы, вида освещения (боковое, верхнее, комбинированное) и размера объекта различия.

    Кроме интенсивности естественного освещения нормируется его равномерность, которая оценивается отношением минимального значения коэффициента естественного освещения к его максимальному значению на рабочей плоскости в пределах характерного поперечного разреза помещения (обычно это разрез посередине помещения).

    Искусственное освещение нормируется следующими показателями:

    1) минимальной освещенностью (Е min), лк;

    2) показателями ослеплённости и дискомфорта;

    3) коэффициентом пульсации освещенности (К Е).

    В зависимости от конструкции применяемых источников света и системы освещения (комбинированное или общее освещение) установлены разные величины минимальной освещенности. Нормативное значение освещенности, создаваемой газоразрядными лампами, при прочих равных условиях из-за их большей светоотдачи выше, чем при использовании ламп накаливания. При комбинированном освещении доля общего освещения должна быть не менее 10 % нормируемой освещенности.

    Приведенные в СНиП нормы являются минимально допустимыми значениями. В тех случаях, когда это целесообразно, применяется повышенная освещенность помещений. Требуемые уровни освещенности допускается снижать в помещениях при кратковременном пребывании в них работающих, когда оборудование не требует постоянного обслуживания.

    Расчет естественного освещения сводится к определению площади световых проемов, обеспечивающих интенсивность солнечного освещения в соответствии с нормативным значением коэффициента естественной освещенности для данного помещения.

    Общие принципы расчета искусственного освещения заключаются в следующем. Сначала выбираются тип источника света (лампы накаливания или люминесцентные лампы), система освещения (общее или комбинированное) и по СНиП 23-05-95 определяется нормативное значение освещенности данного помещения (минимальная освещенность). Затем, отдав предпочтение конкретному виду светильников и способу освещения, определяют схему их размещения в помещении и рассчитывают освещенность в интересующих точках. После этого уточняют размещение и число светильников, а затем определяют единичную мощность ламп. В зависимости от условий освещения рабочих поверхностей и других факторов для расчета искусственного освещения используют различные методики:

    Метод расчета светового потока ламп;

    Расчет методом удельной мощности светильника;

    Расчет точечным методом и др.

    3.4.4. Устройство и характеристика электрических светильников

    Электрический светильник – это устройство, состоящее из источника света (лампы) и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз человека от слепящего действия источника света, защиты источника света от механических повреждений, воздействия окружающей среды и для эстетического оформления помещения.

    Для искусственного освещения помещений используются светильники в виде ламп накаливания и газоразрядных ламп, причем использование последних предпочтительнее. Промышленностью выпускаются лампы накаливания следующих типов: газонаполненные (НГ), вакуумные (НВ), биспиральные с криптоно-ксеноновым наполнением (НБК) и др. Эти лампы просты в устройстве и эксплуатации, дешевы, но они преобразуют в световой поток не более 3% потребляемой энергии, чувствительны к колебаниям напряжения в электрической сети, спектр их излучения сильно отличается от солнечного света (преобладают сильные желтые и красные тона).

    Газоразрядные (люминесцентные) лампы - это трубки или колбы с расположенными внутри электродами, наполненные инертными газами или парами ртути. Видимое излучение в них возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Различают газоразрядные и лампы низкого давления (имеют внутри некоторое разрежение) и высокого давления. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого света (ЛХБ), теплого белого (ЛТБ) и белого света (ЛБ).

    Основным преимуществом газоразрядных ламп перед лампами накаливания является их большая световая отдача, т.е. при небольших затратах энергии они создают значительные уровни освещенности. К недостаткам газоразрядных ламп относятся пульсация светового потока (стробоскопический эффект), шум пускорегулирующей аппаратуры, плохая загораемость ламп низкого давления при пониженной температуре в помещении и др.

    Промышленность выпускает десятки различных типов светильников для ламп накаливания и сотни типов для люминесцентных ламп. В зависимости от распределения светового потока в пространстве различают светильники прямого, рассеянного и отраженного света. В светильниках для люминесцентных ламп используется преимущественно прямое световое распределение, а в светильниках для ламп накаливания – прямое и рассеянное.

    Светильники прямого света излучают в нижнюю полусферу не менее 90 % всего светового потока. Их используют в помещениях с темными потолками и стенами (кузнецы, цеха с выделениями пыли и различных испарений). Светильники рассеянного света излучают вниз и вверх 40 – 60% всего светового потока. Они используются в конторах и бытовых помещениях со светлыми стенами и потолками. Светильники отраженного света излучают в верхнюю полусферу не менее 90 % всего светового потока.

    Светильники с люминесцентными лампами чаще всего выполняются многоламповыми. Они бывают прямого света (типа ОД, ОДР), преимущественно прямого света (ОДО, ОДОР, ШЛД, ШОД) и рассеянного света (ПВЛ). В комбинированных системах используются светильники местного освещения, предназначенные для создания высоких уровней освещенности на ограниченной площади рабочей поверхности. Для местного освещения с целью исключения стробоскопического эффекта обычно используются лампы накаливания.

    Конструктивное исполнение светильников зависит от их назначения. В открытых светильниках лампа не отделена от внешней среды, а в закрытых – лампа и патрон отделены от внешней среды оболочкой. Светильники, применяемые для освещения сырых, насыщенных водяными парами помещений, имеют герметичный корпус. Во взрывозащищенных светильниках приняты меры по предупреждению возникновения искры. Для освещения помещений с повышенной концентрацией пыли используются пыленепроницаемые светильники.

    При эксплуатации электрических светильников, используемых в производственных и бытовых помещениях, регулярно осуществляется контроль их технического состояния, ремонт или замена вышедших из строя ламп и осветительной арматуры (особое внимание исправности светильников уделяется в пожаро- и взрывоопасных и травмоопасных помещениях).

    3.4.5. Контроль освещенности рабочих мест и использование средств индивидуальной защиты

    Все производственные помещения проектируют и строят с учетом обеспечения необходимых норм освещенности. Порядок выбора вида освещения описан выше. Однако в период эксплуатации осветительных установок и рабочих помещений освещенность рабочих мест может ухудшаться до недопустимой величины. Причинами ухудшения освещения могут быть неполадки в работе источников света и выход их из строя, запыление окон и арматуры светильников, перепланировка размещения оборудования, рабочих мест и др. Поэтому уровень освещенности контролируется периодически во всех производственных помещениях в установленном порядке (например, в помещениях со значительным выделением пыли – до четырех раз в год).

    Освещенность помещений и рабочих мест контролируется с помощью переносных ручного действия специальных приборов – люксметров, имеющих светочувствительный фотоэлемент, набор светофильтров и измерительный прибор. В настоящее время для измерения уровня освещенности широко используются люксметры типа Ю-16, Ю-116 и Ю- 117. Диапазон измерения освещенности поверхности люксметрами от 5 до 100 000 люкс. Измерение фактической освещенности рабочих мест проводится по специальным методикам. При этом выполняется серия измерений величины освещенности (Е) искусственными светильниками и коэффициента естественного освещения (е). Результаты измерений сравнивают с санитарно-гигиеническими нормами освещенности и делают вывод о соответствии фактического уровня освещения помещения нормативному. В тех случаях, когда освещение помещения не соответствует нормативам, принимаются необходимые меры по обеспечению оптимального естественного и искусственного освещения.

    При выполнении отдельных видов работ (сварочные работы, работа с расплавленными металлами, работа на местности при высоких уровнях солнечной радиации) для защиты работников от мощных световых излучений используются следующие средства индивидуальной защиты:

    Средства защиты тела (спецодежда и обувь);

    Средства защиты рук (рукавицы, перчатки, дерматологические средства);

    Средства защиты лица и глаз (щитки с непрозрачным корпусом и светофильтром, защитные очки со светофильтрами).

    3.4.6. Санитарно-гигиенические требования к параметрам микроклимата и состава воздуха в производственных помещениях

    Состояние здоровья человека, его работоспособность в значительной степени зависят от микроклимата и состава воздуха в рабочем помещении. Микроклимат производственных помещений – это климат их внутренней среды, который определяется совместно действующими на организм человека температуры, относительной влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

    Жизнедеятельность человека сопровождается непрерывным выделением тепла в окружающую среду. Количество выделяемого тепла зависит от физического напряжения и при тяжелой работе в 5 раз выше, чем в состоянии покоя. Физиологические процессы в человеческом организме протекают нормально при полном отводе выделяемой организмом теплоты в окружающую среду, а это возможно только при комфортных условиях в помещении или на рабочей площадке. В противном случае происходит нарушение теплового баланса, и имеет место перегрев или переохлаждение организма, что обусловливает быстрое утомление, а иногда и потерю трудоспособности или смерть людей.

    Наличие в производственных помещениях чистого и свежего воздуха – обязательная составляющая при обеспечении комфортных условий труда, т.к. повышенные концентрации в воздухе пыли, вредных паров и газов также негативно влияют на жизнедеятельность людей.

    Нормативные показатели (санитарно-гигиенические требования и нормы) производственного микроклимата и воздуха рабочих зон установлены в ГОСТ 12.1.005-8 и СанПиН 2.2.4. 584-96. Этими нормативными документами регламентированы оптимальные и допустимые микроклиматические условия. При длительном и систематическом пребывании человека в оптимальных микроклиматических условиях сохраняется нормальное функциональное состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт и обеспечивается высокий уровень работоспособности. Такие условия предпочтительны на рабочих местах. Допустимые микроклиматические условия при длительном и систематическом воздействии на человека могут вызывать быстро нормализующиеся негативные изменения функционального и теплового состояния организма человека, не выходящие за пределы его физиологических приспособительных возможностей. При этом не нарушается состояние здоровья человека, но возможно дискомфортное ощущение, ухудшение самочувствия и снижение работоспособности.

    Санитарно-гигиенические нормы регламентируют температуру, относительную влажность и скорость движения воздуха в помещениях с учетом способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности выполняемой работы и характера тепловыделений в рабочем помещении. Для оценки вида одежды и акклиматизации организма человека в разное время года введены понятия «теплый» и «холодный» периоды года. Теплый период года характеризуется среднесуточной температурой наружного воздуха, равной +10 0 С и выше, а в холодный – ниже +10 0 С. При учете интенсивности труда все виды работ по энергозатратам организма человека делятся на три категории: легкие, средней тяжести и тяжелые.

    Таким образом, для того, чтобы найти по справочным данным оптимальные или допустимые значения микроклимата для конкретного рабочего помещения, необходимо знать период года (холодный или теплый) и категорию работ по уровню энергозатрат. Оптимальные параметры микроклимата распространяются на всю рабочую зону производственных помещений без разделения на постоянные и непостоянные. Если технически или экономически сложно обеспечить оптимальные параметры микроклимата, то, как минимум, должны быть обеспечены допустимые уровни параметров микроклимата. Если фактические климатические условия рабочего помещения не соответствуют нормативным требованиям, то необходимо принимать меры по обеспечению нормальных микроклиматических условий.

    Кроме параметров микроклимата рабочих помещений нормируется также интенсивность теплового облучения работников. Допустимые значения теплового облучения на рабочих местах не должно превышать 35Вт/м 2 , если в зоне облучения пламенем, нагретым металлом находится 50% и более поверхности тела человека. В целях профилактики тепловых травм людей установлена предельная температура нагретых поверхностей машин, оборудования и ограждающих их конструкций, которая равна 45 0 С.

    3.4.7. Вентиляция, отопление и кондиционирование воздуха

    Для обеспечения комфортного микроклимата и состава воздуха в производственных помещениях используются системы вентиляции, отопления и кондиционирования воздуха. При правильном выборе их типа, производительности и конструкции условия труда на рабочих местах поддерживаются в пределах установленных норм с минимальными затратами труда, денежных средств и энергии.

    Вентиляция – это организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения нагретого, влажного и загрязненного воздуха и подачу на его место свежего.

    По способу побуждения воздуха производственная вентиляция делится на три разновидности: искусственная (механическая), естественная и смешанная. Искусственная вентиляция обеспечивает воздухообмен между помещением и атмосферой с использованием механических побудителей – вентиляторов, естественная – за счет использования разности температуры в помещении и снаружи здания или за счет действия ветрового напора, а смешанная вентиляция – это сочетание первых двух разновидностей. По способу осуществления воздухообмена вентиляция подразделяется на регулируемую и нерегулируемую; по назначению – на рабочую и аварийную; по принципу действия – на вытяжную, приточную и приточно-вытяжную; по охвату рабочих мест и зон – на местную, общеобменную и комбинированную; по характеру распределения воздуха – на компактную и рассредоточенную.

    Вытяжная система вентиляции обеспечивает только удаление воздуха из помещения, а приточная – только подачу наружного воздуха в помещение. Наиболее распространенная система – приточно-вытяжная, когда одновременно осуществляются оба процесса.

    Рабочая система вентиляции служит для удаления из помещения загрязненного воздуха или для снижения концентрации вредных веществ в воздухе помещения до предельно допустимых значений. Аварийная вентиляция обеспечивает предотвращение поражения людей при внезапных выбросах вредных веществ и при выходе из строя рабочей вентиляции.

    Общеобменная вентиляция характеризуется равномерной подачей и удалением воздуха по всему объему помещения. Местная вентиляция служит для удаления заданных объемов воздуха только от определенных рабочих мест или обеспечивает подачу воздуха к определенным местам. Комбинированная вентиляция необходима для активного удаления воздуха по всему объему помещения и от определенных мест.

    На практике для вентиляции производственных помещений чаще всего используют следующие комбинированные системы:

    Вытяжную общеобменную вентиляцию (при малой кратности воздухообмена в помещении);

    Приточную общеобменную вентиляцию в сочетании с местной вытяжкой (в помещениях с локальным выделением вредностей для создания воздушного подпора, усиливающего эффективность работы местной вытяжной вентиляции);

    Приточно-вытяжную общеобменную вентиляцию;

    Местную вытяжную систему вентиляции (вытяжные шкафы, кожухи, зонты и др.);

    Местную приточную вентиляцию (для создания воздушных душей, воздушно-тепловых завес);

    Системы естественной вентиляции (нерегулируемое и регулируемое использование природных сил в виде ветрового и теплового напоров).

    После принятия мер по совершенствованию технологий и конструкции оборудования с целью исключения негативного воздействия вредных веществ, содержащихся в воздухе рабочих помещений, вентиляция позволяет снизить избыточное количество теплоты, влаги, вредных паров, газов и пыли. Одна из главных задач, возникающих при выборе системы эффективной вентиляции – определение воздухообмена, т.е. количества вентилируемого воздуха, которое обеспечит оптимальные параметры микроклимата и состава воздуха в производственном помещении. Затем рассчитывается коэффициент кратности воздухообмена (К) из выражения

    где L – воздухообмен в помещении, м 3 /ч;

    V п – внутренний объем помещения, м 3 .

    При выборе системы вентиляции используют следующие рекомендации. При К<3ч -1 применяют естественную вентиляцию, при К=3-5ч -1 – искусственную, а при К>5ч -1 – искусственную, с подогревом приточного воздуха в зимнее время. Аварийная система вентиляции совместно с рабочей должна обеспечивать кратность воздухообмена более 8ч -1 .

    Отопление производственных помещений предназначено для поддержания комфортной температуры воздуха в помещениях в холодное время года. Кроме того, оно способствует лучшей сохранности зданий и оборудования, т.к. одновременно с обогревом помещений регулируется и влажность воздуха. В холодный и переходный периоды года должны отапливаться все здания и сооружения, в которых время пребывания людей превышает два часа, а также помещения, в которых поддержание температуры необходимо по технологическим условиям. В нерабочее время в отапливаемых производственных помещениях в холодный период года должна поддерживаться температура не ниже +5 0 С, если это допустимо по условиям производства.

    К системам отопления предъявляются следующие санитарно-гигиенические требования:

    Равномерный прогрев всего объема воздуха в помещении;

    Возможность регулирования количества выделяемой теплоты и совмещения отопления и вентиляции;

    Отсутствие загрязнения воздуха помещений вредными выделениями и неприятными запахами;

    Пожаро- и взрывобезопасность;

    Удобство в эксплуатации и ремонте.

    По радиусу действия отопление производственных помещений бывает местное и центральное.

    Местное отопление применяется в одном или нескольких смежных помещениях площадью менее 500 м 2 . В системах такого отопления имеется генератор теплоты, нагревательные приборы и теплоотдающие поверхности, которые конструктивно объединены в одном устройстве. Воздух в этих системах чаще всего нагревается за счет использования теплоты сгорающего в печах топлива (угля, дров, торфа). Реже применяются полы и стеновые панели со встроенными электронагревательными элементами, а также электрорадиаторы. Используются также воздушные (основной элемент - калорифер) и газовые системы местного отопления.

    Центральное отопление по виду используемого носителя может быть водяное, паровое, воздушное и комбинированное. Системы центрального отопления включают в себя генератор теплоты, нагревательные приборы, средства передачи теплоносителя (трубопроводы) и средства обеспечения работоспособности системы (запорная арматура, предохранительные клапаны, манометры и др.). В таких системах теплота вырабатывается за пределами отапливаемых помещений.

    При выборе системы отопления выполняются расчеты для того, чтобы убедиться в способности выбранной системы обеспечивать компенсацию теплопотерь через строительные ограждения, на технологические нужды и нагрев нагнетаемого холодного воздуха при вентиляции. В результате расчетов определяются величина теплопотерь, расход теплоты на собственные нужды котельной и тепловая мощность котельной установки. В зависимости от величины тепловой мощности выбираются тип, марка и число котельных агрегатов. После этого выбирается тип нагревательного прибора (радиаторы, конвекторы или чугунные ребристые) , затем рассчитываются общая площадь нагревательных приборов и требуемое число секций или количество нагревательных приборов.

    В последнее время на производстве и в быту все шире используются системы кондиционирования воздуха. Кондиционирование – это создание и автоматическое поддержание в помещениях независимо от наружных условий оптимального микроклимата и состава воздуха.

    Процесс автоматического поддержания температуры, влажности, скорости и равномерности движения воздуха, а также его чистоты в соответствии с санитарно-гигиеническими требованиями обеспечивается специальными техническими устройствами – кондиционерами. В зависимости от производственных условий используются два типа кондиционеров: полного и неполного кондиционирования, когда автоматически поддерживается только часть параметров микроклимата – чаще всего температура.

    В необходимых случаях кондиционеры обеспечивают специальную обработку воздуха: ионизацию, озонирование, дезодорацию и т.п.

    По способу холодоснабжения различают автономные и неавтономные кондиционеры. Автономные кондиционеры имеют встроенные холодильные агрегаты, а неавтономные – снабжают помещение холодоносителем централизованно. По способу подготовки и распределения воздуха кондиционеры делятся на центральные и местные. Конструкция центральных кондиционеров обеспечивает приготовление воздуха вне пределов обслуживаемых помещений и распределение его по системам воздухопроводов. Их применяют в помещениях большого объема. Местные кондиционеры подготавливают воздух непосредственно в обслуживаемых помещениях и подают его сосредоточенно в определенную зону. Их применяют в сравнительно небольших помещениях объемом до 500 м з.

    Кондиционирование воздуха по сравнению с вентиляцией требует больших капитальных вложений и эксплуатационных затрат, но вложенные средства окупаются за счет повышения производительности труда и качества выпускаемой продукции, снижения заболеваемости работающих и процента выбракованных изделий.

    3.4.8. Контроль параметров микроклимата и содержания вредных веществ в воздухе помещений

    При эксплуатации систем вентиляции, отопления и кондиционирования воздуха регулярно ведется контроль за температурно-влажностным режимом и составом воздуха в рабочих помещениях.

    Измерения показателей микроклимата (температуры, относительной влажности, скорости движения воздуха) производятся в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса. Для измерения температуры воздуха используются термометры различной конструкции: жидкостные, деформационные, термоэлектрические, термотранзисторные и т.д. Измерение относительной влажности воздуха производится с помощью волосных гигрометров или психрометрическим методом, используя аспирационный психрометр. Скорость движения воздуха в помещении измеряется с помощью крыльчатых или чашечных анемометров, а при малых скоростях движения воздуха – термоанемометрами. Атмосферное давление измеряется барометрами (суточными или недельными). Интенсивность тепловых излучений в помещении (при наличии мощных источников тепла) измеряется с помощью специальных электрических приборов – актинометров.

    Результаты измерений фактических параметров микроклимата рабочих помещений сравниваются с нормативными значениями, и делается вывод о соответствии фактического состояния воздушной среды в рабочей зоне санитарно-гигиеническим требованиям. По результатам измерений можно также судить об эффективности работы систем отопления, вентиляции и кондиционирования.

    Контроль содержания вредных газов и паров в воздухе рабочей зоны осуществляется путем измерения концентрации газа с помощью специальных приборов. Пары воздуха отбираются на высоте расположения органов дыхания работающих (1,5 м от пола). Перед началом проведения измерений необходимо установить, поступление каких вредных веществ и в какие периоды возможно в воздух рабочей зоны. После выявления видов вредных веществ, пары которых могут распространиться в воздухе рабочих помещений, составляется схематический план цеха (участка ведения работ) с указанием точек отбора проб воздуха и периодичности проведения измерений концентрации вредных веществ в воздухе.

    По длительности выполнения различают аспирационный (продолжительный) и одномоментный методы отбора проб воздуха. Первый метод основан на прокачивании анализируемой пробы воздуха через твердые или жидкие среды для задержки в них определенного вещества за счет его механического разделения или растворения. Второй метод заключается в отборе из воздуха рабочей зоны пробы в определенный момент времени для последующего анализа.

    Концентрацию вредного вещества в воздухе определяют различными методами: индикационным, колориметрическим, фотометрическим, люминесцентным, полярографическим, хроматографическим и другими методами. Способы санитарного анализа воздуха подразделяются на три основные группы: экспрессные, лабораторные и автоматические. Экспрессные методы определения концентрации паров вредных веществ в воздухе основаны на применении специальных индикаторов и газоанализаторов, которые обеспечивают получение результатов контроля в течение нескольких минут без участия специально обученного персонала. Наиболее точными являются лабораторные методы, но они малооперативные и требуют наличия высококвалифицированных лаборантов и дорогого оборудования. В необходимых ситуациях используются и автоматические газоанализаторы непрерывного действия с различной чувствительностью. Автоматические газоанализаторы высокой чувствительности обнаруживают загрязнение воздуха на уровне предельно допустимых концентрациях, а при пожаро- и взрывоопасных концентрациях дают световой или звуковой сигнал.

    Для контроля содержания вредных веществ в воздухе рабочих помещений и оценки его санитарного состояния на производстве широко используется экспресс-метод, осуществляемый с помощью переносных универсальных газоанализаторов типа УГ-2,ГХ-4 ручного действия и др. Метод основан на химической реакции между индикаторным порошком, засыпанным в стеклянную трубку, и исследуемым веществом, пары которого вместе с воздухом прокачиваются через индикаторный порошок. В зависимости от концентрации паров вредного вещества в воздухе индикаторный порошок окрашивается на большую или меньшую длину. С помощью специальных градуированных шкал по длине окрашенного столбика индикаторного порошка в трубке определяется концентрация вредного вещества в мг/м з. Время проведения опыта и объем прокачиваемого воздуха задается в зависимости от вида вредного вещества. Для более точного определения концентрации вредного газа в воздухе рабочей зоны проводят не менее трех опытов. Вывод о соответствии воздуха рабочей зоны санитарным требованиям делается после сравнения фактической концентрации вредного вещества с величиной его предельно допустимой концентрации (ПДК). Если фактическая концентрация вредного вещества превышает величину ПДК, то делается вывод о несоответствии содержания данного вещества в воздухе рабочей зоны санитарно-гигиеническим нормам.

    3.4.9. Использование коллективных и индивидуальных средств защиты от воздействия вредных пыли, аэрозолей, паров и газов

    На хозяйственных объектах проводится большое количество организационных и инженерно-технических мероприятий по обеспечению оптимальных параметров микроклимата и предупреждению вредных выделений и выбросов в воздух рабочих помещений. Однако в некоторых случаях трудно, а иногда и невозможно, обеспечить нормальное значение параметров микроклимата и состава воздуха на рабочих местах. Поэтому для предотвращения и уменьшения воздействия на работающих указанных выше опасных производственных факторов используются средства коллективной и индивидуальной защиты.

    Средства коллективной защиты обеспечивают безопасность двух и более работающих за счет нормализации параметров микроклимата и состава воздуха в производственных помещениях. К ним относятся системы аварийной вентиляции, специальные укрытия, кабины, убежища с нормативными параметрами микроклимата и состава воздуха.

    Средства индивидуальной защиты (СИЗ) обеспечивают безопасность одного работающего и применяются при недостаточной эффективности систем вентиляции и отопления. К ним относятся:

    1) средства защиты органов дыхания;

    2) средства защиты тела, головы, ног и рук человека;

    3) медицинские средства защиты.

    Для защиты органов дыхания людей от воздействия вредных веществ (пыли, аэрозолей, паров и газов) используются изолирующие и фильтрующие СИЗ. Изолирующие средства обеспечивают надежную защиту в условиях недостаточного содержания кислорода и большой концентрации вредных веществ в воздухе рабочего помещения. Фильтрующие средства защиты органов дыхания используются в условиях достаточного содержания свободного кислорода в воздухе и ограниченного содержания в нем вредных веществ.

    Основными видами изолирующих средств защиты органов дыхания являются шланговые противогазы и автономные дыхательные аппараты. Шланговые противогазы (ПШ-1М, ПШ-2, ППМ-1) используются при работе в локальных зонах заражения (колодцах, цистернах, резервуарах, траншеях). Воздух в шлем-маску противогаза типа ПШ поступает по соединенному с ней армированному шлангу длиной 10 м, второй конец которого закрепляется в зоне чистого воздуха. Автономные дыхательные аппараты используются как в локальных, так и крупномасштабных зонах заражения воздушной среды. В противогазах автономного действия воздух в шлем-маску подается из ранцевой системы приготовления дыхательной смеси. Наибольшее распространение имеют автономные дыхательные аппараты со сжатым кислородом (КИП-7, КИП-8, Р-30, «Урал-7»), т.к. они постоянно готовы к применению и обеспечивают экономное расходование кислорода. Аппараты с жидким кислородом (типа «Комфорт») обеспечивают оптимальные условия дыхания при повышенной температуре (в зоне пожара), но требуют длительной подготовки к применению. Аппараты с химически связанным кислородом (ШСМ-1,ШС-7м, ИП-4) имеют небольшой вес, простую конструкцию, но обеспечивают защиту человека на короткое время (от получаса до часа).

    Фильтрующие СИЗ выпускаются в виде промышленных, гражданских противогазов и респираторов. Они делятся по назначению на противопылевые и газопылезащитные. Противопылевые фильтрующие средства обеспечивают защиту органов дыхания человека от действия пыли и аэрозолей в виде дыма, тумана и распыленных бактериальных средств. Газопылезащитные фильтрующие средства обеспечивают защиту еще и от действия паров и газов на органы дыхания человека. Основными видами фильтрующих противопылевых СИЗ являются респираторы одноразового исполнения (типа «Лепесток», «Кама», У-2К и др.) и многоразового пользования за счет замены фильтра (Ф-62, «Астра-2» и др.), а также шлемы типа АПШ, ФПП и др. Основными видами фильтрующих противогазовых СИЗ являются:

    1) промышленные фильтрующие противогазы с заменяемыми фильтрующими элементами (коробками) в зависимости от вида вредного вещества (используются пять видов основных и девять дополнительных марок фильтрующе-поглощающих коробок);

    2) газопылезащитные респираторы (РПГ-67, РУ-60м, «Снежок - ГП», «Лепесток-Г») с несколькими марками фильтрующих элементов для защиты от действия разных вредных веществ;

    3) гражданские противогазы, имеющие один тип фильтрующе-поглощающей коробки для защиты от всех боевых отравляющих веществ и некоторых видов промышленных вредных веществ.

    Порядок подбора СИЗ органов дыхания для рабочих и служащих следующий. При наличии опасности распространения в воздухе рабочих помещений вредных пыли, аэрозолей, паров или газов составляются списки работников, которые должны быть обеспечены СИЗ органов дыхания, выбираются тип и марка СИЗ, организуется приобретение необходимого количества средств защиты и складирование их вблизи рабочих мест. При выборе СИЗ основной задачей является обеспечение максимальной безопасности людей. При этом учитываются следующие факторы:

    1) вид возможного заражения воздуха рабочих помещений или участков проведения работы;

    2) интенсивность, вид и продолжительность трудовой деятельности рабочих и служащих;

    3) назначение и защитные свойства СИЗ;

    4) уровень подготовки работников к использованию СИЗ;

    5) сложность в обращении СИЗ и др.

    Респираторы и противогазы подбирают индивидуально по размерам таким образом, чтобы обеспечить герметичность прилегания маски к лицу и исключить болевые ощущения при работе.

    В случае необходимости, кроме средств защиты органов дыхания, для защиты людей от воздействия вредных пыли, аэрозолей, паров и газов используются средства защиты тела человека (фильтрующие или изолирующие костюмы, куртки, комбинезоны и другая спецодежда), головы (каски, шлемы, шапки, береты), ног (специальная обувь) и рук человека, а также медицинские средства защиты (медикаменты, защитные дерматологические средства).

    3.4.10.Санитарно-бытовое обеспечение работников хозяйственного объекта

    Санитарно-бытовое обеспечение работников хозяйственного объекта также является важной составляющей обеспечения комфортных условий труда. Проектирование санитарно-бытовых помещений, а также помещений здравоохранения, общественного питания, торговли и культурно-массового обслуживания, производится согласно нормам, приведенным в СНиП 2.09.04-87. В этих нормах установлены площади, количество, порядок размещения и устройство гардеробных, кладовых, душевых, умывальных и других помещений санитарно-бытового обеспечения работников.



    Понравилась статья? Поделиться с друзьями: