К какому виду контроля относится дозиметрический контроль. Радиационный и дозиметрический контроль. Понятие о радиационном фоне

Как уже говорилось, основой таких поражающих факторов, как проникающая радиация и радиоактивное заражение местности являются ионизирующие излучения различной природы ( - ,  - и - излучения и нейтроны), которые не обнаруживаются органами чувств людей, а их негативное проявление маскируется скрытым периодом действия.

Вследствие этих особенностей возникает необходимость в проведении определенных мероприятий для выявления и своевременной оценки их воздействия на людей с целью принятия необходимых мер защиты.

Одним из таких мероприятий, входящих в радиационную защиту населения, является радиационный и дозиметрический контроль (РиДК).

Радиационный и дозиметрический контроль предназначен для решения следующих задач:

    Установление факта и степени радиоактивного заражения (загрязнения) любых элементов и объектов окружающей среды (местности, воздуха, воды, одежды, продовольствия, техники, зданий, сооружений и т.п.)

    Выявления зон радиоактивного заражения (загрязнения) местности и видов ИИ.

    Определение качества дезактивации зараженных объектов.

    Определение доз облучения, получаемых людьми при нахождении в зонах радиоактивного заражения (загрязнения).

Первые три задачи входят в радиационный контроль военное время - в радиационную разведку). Четвертая задача является одной из задач контроля облучения (дозиметрического контроля ).

Радиационный контроль проводится приборными средствами: индикаторами, рентгенометрами и радиометрами.

Контроль облучения (дозиметрический контроль) подразделяется на индивидуальный и групповой , причем индивидуальный контроль облучения проводится приборными средствами, а групповой контроль может вестись как приборными средствами, так и расчетным методом .

Для индивидуального дозиметрического контроля применяются индивидуальные дозиметры, а для группового приборного контроля – дозиметрические сигнализаторы и дозиметры.

Индивидуальный контроль проводится для получения конкретных данных о дозах облучения каждого человека, работающего в зонах радиоактивного загрязнения.

Групповой контроль служит для получения данных о средних дозах облучения, получаемых персоналом и формированиями при работе в зонах радиоактивного заражения и населением при нахождении на загрязненных территориях.

Групповой контроль расчетным методом вводится для части населения, не охваченной контролем с помощью технических средств. Он заключается в определении дозы облучения по средним уровням радиации с учетом продолжительности облучения и защищенности людей.

Учет доз облучения при любом виде дозиметрического контроля ведется уполномоченными органами (чаще всего медицинскими) и обязательно отражается в соответствующих журналах и карточках учета.

      1. Приборы радиационного и дозиметрического контроля.

        1. Методы обнаружения и измерения ионизирующих излучений.

Принцип обнаружения ионизирующих излучений основан на их способности ионизировать вещество среды, т.е. изменять его физические и химические свойства, которые могут быть обнаружены и измерены. Такими свойствами являются: засвечивание фотоматериалов, изменение окраски некоторых химических растворов, люминесценция некоторых веществ, изменение электропроводности газов. Перечисленные изменения в веществах составляют основу методов обнаружения и измерения ИИ.

Фотографический метод основан на сравнении степени почернения фотоэмульсии под воздействием ИИ с эталоном. На этом принципе основаны индивидуальные фотодозиметры.

Химический метод заключается в том, что под действием ИИ в химическом растворе происходят реакции окисления или разложения и образовавшиеся вещества вступают в реакцию с индикаторным веществом, меняющим цвет раствора. По интенсивности окраски судят о поглощенной дозе. Этот метод используется в химических дозиметрах.

Сцинтилляционный метод основан на свойствах некоторых веществ под действием ИИ либо светиться (радиолюминисценция), либо накапливать энергию, которая под действием УФ- или ИК-излучения вызывает видимое свечение (радиофотолюминисценция и радиотермолюминисценция соответственно). Свойство радиолюминисценции используется в измерителях мощности дозы, а два других свойства – в индивидуальных дозиметрах.

Ионизационный метод использует свойство ионизированного газа под действием сил электрического поля проводить ионизационный ток, который позволяет судить об интенсивности ионизирующих излучений.

Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство (см. Рис.1.). В простейшем случае этот прибор состоит из двух электродов, пространство между которыми заполнено газом. К электродам приложена разность потенциалов, создающая между ними электрическое поле. Положительные и отрицательные ионы, образовавшиеся под действием ИИ, движутся к электродам, что и вызывает протекание ионизационного тока в цепи.

Ионизационный ток пропорционален интенсивности излучения, но сложным образом: зависит от напряжения, приложенного к электродам. Эта зависимость называется вольт-амперной характеристикой прибора и показана на рис.2..

На характеристике выделяются три области. Первая область характеризуется тем, что с ростом напряжения растет ионизационный ток, т.к. все большее число ионов достигает электродов и не рекомбинирует. Это область рекомбинации.

В области II все образовавшиеся ионы достигают электродов. Поэтому при увеличении напряжения от V 1 до V 2 ток в цепи не изменяется. Это область насыщения, в ней работают ионизационные камеры , измеряющие поглощенные или экспозиционные дозы ИИ.

Увеличение напряжения на электродах выше V 2 приводит к возрастанию ионизационного тока. Это происходит потому, что в сильных электрических полях энергия ионов, приобретаемая ими на длине свободного пробега, становится столь большой, что они сами уже способны производить ионизацию при столкновении с нейтральными молекулами. В результате количество пар ионов, достигающих электродов, будет превышать то количество, которое образовалось под воздействием ИИ. Эта область напряжений называется областью ударной ионизации. Приборы, которые работают в этой области, называются газоразрядными счетчиками. Они используются для измерения мощности дозы ИИ малой интенсивности, т.к. обладают чувствительностью в 10 4 раз выше, чем в ионизационной камере.

– это комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений. Организация дозиметрического контроля предусматривает назначение допустимого времени пребывания (работы) на загрязненной радиоактивными веществами местности или работы с источниками ионизирующих излучений с учетом ранее полученных доз облучения. Результаты дозиметрического контроля используются также для принятия мер непревышения допустимых пределов индивидуальных доз облучения людей.

Воздействие ионизирующего излучения на организм человека оценивается величиной эффективной дозы (см. Доза эффективная ), используемой как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности. Единица измерения эффективной дозы - Зиверт (Зв). Допустимые пределы доз определяются в соответствии с рекомендациями норм радиационной безопасности (НРБ-99/2009). По данным дозиметрического контроля определяется режим работы формирований (групп спасателей) и необходимость направления на обследование в медицинские учреждения. Контроль облучения личного состава (персонала), находящегося на загрязненной радиоактивными веществами местности или работающими с источниками ионизирующих излучений, проводится постоянно. Дозиметрический контроль ведется групповым и индивидуальным способами. Для населения его допускается производить расчетным путем по уровням излучения и времени работы (нахождения на загрязненной территории) с учетом коэффициента ослабления.

Индивидуальный контроль проводится с целью получения данных о дозах облучения каждого человека и включает в себя определение доз внешнего облучения с использованием индивидуальных дозиметров (измерителей доз), а также контроль поступления радиоактивных веществ в организм или отдельный орган, формирующих дозы внутреннего облучения, который осуществляется в медицинских учреждениях. Групповой контроль организуется руководителем (начальником) с целью получения данных о средних дозах облучения личного состава, когда отсутствует возможность обеспечения всех работающих в условиях радиоактивного загрязнения индивидуальными дозиметрами (измерителями доз). Для этого формирования обеспечиваются индивидуальными дозиметрами (измерителями доз) из расчета 1-2 дозиметра на группу людей 12-20 человек, действующих в одинаковых условиях обстановки. Снятие показаний индивидуальных дозиметров (измерителей доз) как при групповом, так и при индивидуальном способе контроля производится руководителем (начальником) или специально назначенным лицом. Измерение показаний индивидуальных дозиметров, расчет эффективной дозы внешнего облучения личного состава, и их регистрация производится сразу после окончания работы и выхода с загрязненной территории (участка). Возможна другая периодичность измерений в зависимости от технических характеристик индивидуальных дозиметров. Эта периодичность должна быть установлена в инструкции.

По результатам измерения или расчета индивидуальных доз внешнего и внутреннего облучения производится определение индивидуальных эффективных доз облучения, и результаты заносятся в журналы регистрации доз облучения. В журналы регистрации доз облучения заносятся только дозы облучения, отличные от нулевых. Эти журналы должны храниться в подразделениях (формированиях) в течение календарного года. В январе каждого года значения эффективной дозы облучения (внешнего и внутреннего) личного состава на основании записи в журналах регистрации доз вносятся в карточки учета индивидуальных доз облучения, а также в базу данных автоматизированной системы учета индивидуальных доз (при ее наличии). Учет доз производится за последовательные 5 лет и весь период службы (работы). Карточки хранятся в течение 50 лет после прекращения военнослужащим (рабочим, служащим) работы в условиях воздействия ионизирующего излучения. В случае перевода личного состава в другие части или учреждения, где проводятся такие работы, копии карточек должны пересылаться на новое место службы (работы). Сведения о дозах облучения прикомандированных военнослужащих, рабочих и служащих, имеющих допуск к работам с источниками ионизирующих излучений, должны сообщаться по месту их постоянной службы (работы) в течение месяца после окончания командировки.

Командиры (начальники) подразделений, работающих в условиях ионизирующих излучений, должны принимать все меры к снижению доз облучения личного состава до возможно низкого уровня. Снижение доз облучения личного состава достигается:

  • использованием теневой защиты от ионизирующего излучения, стационарных и переносных экранов, снижающих уровни гамма- и нейтронного излучений, специальной одежды и обуви, а также , снижающих уровни альфа- и бета-излучений;
  • применением дистанционного управления и дистанционного инструмента, проведением организационных мероприятий, направленных на увеличение расстояния от ИИИ;
  • ограничением времени работы в условиях воздействия ионизирующего излучения.

Все случаи облучения свыше основных пределов доз, установленных НРБ-99/2009, расследуются комиссией. По материалам расследования руководителями (командирами, начальниками) принимаются решения, включающие меры по предотвращению случаев переоблучения личного состава.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Виды радиационного дозиметрического контроля.

2. Объекты и задачи радиационного дозиметрического контроля.

3. Методы дозиметрии ионизирующих излучений:

Ионизационные методы;

Сцинтилляционные методы;

Люминесцентные методы.

ОБЪЕМ САМОСТОЯТЕЛЬНОЙ РАБОТЫ:

1. Ознакомиться с устройством и правилами работы приборов СРП-68-01, СРП-88Н, ДБГ-01-Н.

2. Обнаружить источник ионизирующего излучения.

3. Измерить радиационный фон в учебной комнате и на территории, прилегающей к учебному корпусу.

Радиационный дозиметрический контроль охватывает все виды воздействия ионизирующего излучения на человека и является неотъемлемой частью системы радиационной безопасности.

Целью радиационного контроля является получение информации об индивидуальных и коллективных дозах облучения персонала, пациентов и населения, а также сведения о всех регламентируемых величинах, характеризующих радиационную обстановку.

В соответствии с Основными санитарными правилами обеспечения радиационной безопасности (ОСПОРБ-99) объектами радиационного контроля являются:

Персонал групп А и Б при воздействии на них ионизирующего излучения в производственных условиях;

Пациенты при выполнении медицинских рентгенорадиологических процедур;

Население при воздействии на него природных и техногенных источников излучения;

Среда обитания человека.

Контроль за радиационной безопасностью в организации разрабатывается на стадии проектирования. В разделе «Радиационный контроль» определяются виды и объем радиометрического и дозиметрического контроля, перечень необходимых приборов, размещение стационарных приборов и точек постоянного и периодического контроля, состав необходимых помещений, а также штат службы радиационной безопасности. Контроль за радиационной безопасностью, определенной проектом, в ходе эксплуатации уточняется в зависимости от конкретной радиационной обстановки в организации и на прилегающей территории, и согласовывается с органами государственного санитарно-эпидемиологического надзора.

В организации производственный контроль за радиационной безопасностью осуществляется специальной службой или лицом, ответственным за радиационную безопасность, прошедшим специальную подготовку.

При работе с техногенными источниками излучения радиационный контроль должен осуществляться за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения.

Вклад природных источников излучения в облучение персонала в производственных условиях должен контролироваться и учитываться при оценке доз в тех случаях, когда он превышает 1 мЗв в год.

Индивидуальный контроль за облучением персонала в зависимости от характера работ включает:

Радиометрический контроль за загрязненностью кожных покровов и средств индивидуальной защиты;

Контроль за характером, динамикой и уровнями поступления радиоактивных веществ в организм с использованием методов прямой и косвенной радиометрии;

Контроль с использованием индивидуальных дозиметров за дозой внешнего бета-, гамма- и рентгеновского излучений, нейтронов, а также смешанного излучения.

По результатам радиационного контроля должны быть рассчитаны значения эквивалентных и эффективных доз у персонала.

Индивидуальная доза облучения регистрируется в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания банка данных в организациях. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовой эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессионального облучения.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

Измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

Измерение мощности дозы рентгеновского и гамма-излучений, плотности потоков бета-частиц, нейтронов и других видов ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

Измерение уровней загрязнения рабочих поверхностей, оборудования, средств индивидуальной защиты, кожных покровов и одежды персонала;

Определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

Измерение или оценку выбросов и сбросов радиоактивных веществ;

Контроль за уровнями загрязнения радиоактивными веществами транспортных средств;

Определение уровня загрязнения в объектах окружающей среды в контролируемых зонах.

Данные контроля за радиационной безопасностью используются для оценки радиационной обстановки, установления контрольных уровней, разработки мероприятий по снижению доз облучения и оценки их эффективности, ведения радиационно-гигиенических паспортов организаций и территорий.

При установлении администрацией учреждения контрольных уровней перечень и числовые значения их согласовываются с органом государственного санитарно-эпидемиологического надзора.

При установлении контрольных уровней следует исходить из принципа оптимизации с учетом:

Неравномерности радиационного воздействия во времени;

Целесообразности сохранения уже достигнутого уровня облучения на данном объекте ниже допустимого;

Эффективности мероприятий по улучшению радиационной обстановки.

При изменении характера работ контрольные уровни подлежат уточнению.

И в системе мероприятий по обеспечению радиационной безопасности различных групп населения также исключительно важное значение принадлежит инструментальному объективному дозиметрическому контролю. В отличие от многих других физических и химических факторов окружающей среды ионизирующая радиация субъективно не воспринимается органами чувств человека (даже при весьма высоких уровнях). Поэтому объективное суждение о наличии, характере и уровнях радиации достоверно может быть только в результате инструментально-дозиметрического исследования.

Объекты и задачи такого исследования разнообразны. Главными из них являются:

1. Определение фактической дозы внешнего ионизирующего облучения в естественных условиях, а также в различных условиях использования искусственных источников радиации или аварийных ситуациях.

2. Определение эффективности устройств и средств защиты от ионизирующего излучения.

3. Определение наличия и уровней загрязнения объектов окружающей среды радиоактивными нуклидами.

4. Определение содержания радиоактивных нуклидов в воздухе, почве, воде, пищевых продуктах.

При необходимости определения нуклидного состава дозиметрическое исследование сочетается с химическим. В настоящее время для перечисленных выше целей используются различные методы. Все они основаны на непосредственной регистрации ионизирующего излучения ли­бо вторичных эффектов, возникающих при его взаимодействии с облучаемой средой.

МЕТОДЫ КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ

II Дозиметри́ческий контро́ль

комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т.п., а также уровней загрязнения окружающей среды радиоактивными веществами; в условиях ядерной войны предусматривается осуществление Д. к. личного состава войск и формирований гражданской обороны, различных групп населения и окружающей среды.

Дозиметри́ческий контро́ль группово́й - Д. к. группы людей, находящихся в одинаковых условиях облучения.

Дозиметри́ческий контро́ль индивидуа́льный - Д. к., обеспечивающий измерение и оценку внешнего облучения человека, степени его внутреннего радиоактивного загрязнения, а также загрязнения его кожных покровов и одежды.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Дозиметрический контроль" в других словарях:

    дозиметрический контроль - дозиметрический контроль: Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений; Источник … Словарь-справочник терминов нормативно-технической документации

    Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

    Дозиметрический контроль - комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений … Российская энциклопедия по охране труда

    дозиметрический контроль - Комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений. [ГОСТ Р 22.0.05 94] Тематики техногенные чрезвычайные ситуации Обобщающие… … Справочник технического переводчика

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis fizika atitikmenys: angl. health monitoring; radioactive survey vok. Kernstrahlungskontrolle, f; Strahlenschutzüberwachung, f rus. дозиметрический контроль, m; радиационный контроль, m pranc. contrôle de… … Fizikos terminų žodynas

    дозиметрический контроль - rus радиационнная дозиметрия (ж), дозиметрический контроль (м) eng radiation monitoring fra détection (f) des rayonnements deu Strahlennachweis (m), Strahlenüberwachung (f) spa control (m) de la irradiación … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Esamos jonizuojančiosios spinduliuotės aptikimas ir matavimas dozimetriniais prietaisais. Taip pat vadinama radiologine kontrole. atitikmenys: angl. radiological… …

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Veiksmai ir priemonės technikos, maisto produktų, vandens ir kt. objektų radioaktyviajam užterštumui nustatyti ir žmonių radioaktyviąjai apšvitai kontroliuoti.… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

    Дозиметрический контроль - мероприятие по защите войск от поражения радиоактивными веществами; подразделяется на контроль радиоактивного облучения и контроль радиоактивного заражения. Контроль радиоактивного облучения состоит из измерения доз облучения, получаемых… … Краткий словарь оперативно-тактических и общевоенных терминов

    Комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т. п., а также уровней загрязнения окружающей… … Большой медицинский словарь

ДОЗИМЕТРИЧЕСКИЙ КОНТРОЛЬ

Для проведения дозиметрического контроля применяют различного вида дозиметры, которые условно можно разделить на следующие группы:

  • 1) рентгенометры - приборы, измеряющие мощность экспозиционной дозы ионизирующего излучения;
  • 2) радиометры - приборы, измеряющие плотность потоков ионизирующих излучений;
  • 3) индивидуальные дозиметры - приборы, измеряющие экспозиционную или поглощенную дозу ионизирующих излучений.

Действие дозиметрических приборов основано на измерении тока или электрического заряда на выходе пропорционального детектора, дающим информацию об энергии, потерянной ионизирующим излучением в чувствительном объеме детектора. Интегрирование «элементарных» зарядов, создаваемых в объеме детектора при воздействии отдельных частиц или квантов, производится как в самом детекторе, так и в измерительном устройстве. По величине суммарного заряда, накопленного за определенный промежуток времени, можно судить о величине дозы, энергии излучения и т.д., а по величине тока - о соответствующем значении мощности дозы, интенсивности и других энергетических величин, нормированных по времени.

Наиболее распространенным является ионизационный метод регистрации, основанный на измерении степени ионизации среды, через которое прошло излучение.

Сцинтилляционный метод регистрации излучений основан на измерении интенсивности световых вспышек, возникающих в люми- несцирующих веществах при прохождении через них ионизирующих излучений.

Фотографический метод контроля основан на непосредственном определении дозы ионизирующего излучения по оптической плотности почернения рентгеновской пленки с помощью денситометра (предварительно откалиброванного по контрольным пленкам).

Для обнаружения изменения радиационной обстановки по гамма- излучению, жесткому бета-излучению и нейтронам и измерения мощности экспозиционной дозы применяют индикатор ионизирующих излучений «Соловей». Прибор имеет индикаторы звуковой (для определения потоков излучений малой интенсивности) и световой (для определения потоков излучений больших интенсивностей).

Для измерения мощности экспозиционной дозы гамма-излучения используют прибор «Кактус» - сетевой стационарный прибор с ионизационными камерами разных размеров. Сигнальное устройство автоматически срабатывает при превышении заданной мощности дозы. Портативный миллирентгенометр ПМР применяют для измерения мощности экспозиционной дозы гамма-излучения.

Прибор Сигнал» - карманный радиометр для измерения мощности дозы, сигнализации о превышении допустимой мощности, а так же контроля загрязнений поверхностей бета- и гамма-активными веществами. Прибор имеет световую и звуковую сигнализации.

Для регистрации и сигнализации о превышении уровня загрязненности рабочих поверхностей, одежды, рук альфа- и бета-актив- ными веществами служит прибор ТИСС - универсальный радиометр, работающий от сети переменного тока. Прибор «Олеандр» (ИЗВ-1) предназначен для экспрессного определения содержания в воздухе неактивной пыли и недолгоживущих продуктов распада радона. В основу работы прибора положен метод концентрирования дисперсной фазы аэрозоля путем прокачки определенного объема воздуха через фильтрующую ленту и последующего измерения собственной активности отобранной пробы и толщины пылевого осадка на фильтре по поглощению альфа-частиц, испускаемых имеющимся в приборе источником.

Метод индивидуальной дозиметрии выбирают в зависимости от вида ионизирующего излучения, особенностей приборов, нужных диапазонов измерений, точности показаний, объема работ. Примерами таких дозиметров служат комплекты индивидуальных дозиметров КИД-1 для измерения интегральной дозы жесткого рентгеновского и гамма-излучения в диапазоне 0,02...2 Р; комплект индивидуального дозиметрического контроля ДК-0,2 для измерения суммарной дозы рентгеновского и гамма-излучений в диапазоне

0...0,2 Р. Индивидуальные прямопоказывающие дозиметры содержат в едином корпусе детектор и устройство отсчета и индикации величины дозы; они характеризуются небольшими габаритными размерами и массой.

Контрольные вопросы

  • 1. Укажите основные виды ионизирующих излучений.
  • 2. Какими параметрами характеризуется радиация и ее источники? Укажите единицы измерения радиационных доз и активности радионуклидов.
  • 3. Когда возникает острая и хроническая лучевая болезнь?
  • 4. Как воздействует радиация на организм человека и от чего зависит степень воздействия радиации?
  • 5. Как и по каким параметрам осуществляется гигиеническое нормирование ионизирующего излучения?
  • 6. Основные принципы обеспечения радиационной безопасности.
  • 7. Каковы методы и средства защиты от радиации?
  • 8. Как рассчитать необходимую толщину защитного экрана от ионизирующего излучения?
  • 9. Какие материалы применяются от ионизирующих излучений различного вида?
  • 10. В каком случае оправдан коллективный риск потенциального облучения?
  • 11. Как определяются индивидуальный и коллективный пожизненный риск сокращения полноценной жизни от радиации?
  • 12. Какие средства индивидуальной защиты применяются от ионизирующих излучений?


Понравилась статья? Поделиться с друзьями: