Отравляющие вещества удушающего действия. Химическое оружие Ов удушающего действия поражают

ТЕКСТ ЛЕКЦИИ

Введение

В настоящее время известно свыше 5 млн. химических соединений,

из которых 535000 признаны потенциально опасными. Во всем мире производится более 1 млн. Наименований химических средств в год, причем в промышленное производство, с/х и сферу быта ежегодно внедряется примерно 1000 новых химикатов.

Рост изготовления и применения химических веществ приводит к

неизбежному увеличению их транспортировки и объемов складирования.

Слайд № 1 «сфера применения ОВ СДЯВ удушающего действия в современной промышленности».

№ п/п

Наименование ОВ,

Сферы применения в промышленности
1 Акрилонитрит Производство синтетических волокон, синтетической резины, каучуков, красителей.
2 Аммиак Производство азотной кислоты, цианистого водорода, акрилонитрита, синтетических волокон, удобрений, взрывчатых веществ, хладогент.
3 Азотная кислота В органическом синтезе красящих веществ, нитровании целлюлозы, металлургии, производстве нитратов, удобрений.
4 Сероуглерод Производство целофана, ткани, растворителей,дезинфицирующихх средств, вулканизации каучука.
5 Фосген Производство пластмасс, синтетического каучука, красителей, мочевины.
6 Хлор Производство пластмасс, дезинфекции, отбеливающих средств, глицерина, очистки воды, в металлургии.
7 Хлорпикрин Средство для борьбы с вредителями сельскохозяйственных растений, дезинфицирующие средства и др.

К ОВ удушающего действия относятся такие вещества, которые при ингаляционном отравлении вызывают поражения органов дыхания и токсический отек легких с развитием острого кислородного голодания. В качестве ОВ удушающего действия в первую мировую применялись хлор, хлорпикрин, фосген, дифосген. В последующем хлор из-за низкой токсичности был снят с вооружения. Хлорпикрин в настоящее время применяется как учебное ОВ для противогазов. Таким образом, к этой группе сейчас относятся фосген и дифосген.

Военные врачи в практической деятельности могут сталкиваться с сильнодействующими ядовитыми веществами удушающего действия в результате разрушения промышленных объектов, хранилищ, складов.

Вещества, способные вызвать массовые отравления удушающего характера при разрушении химических объектов, мы разделили на следующие группы:

СЛАЙД № 2 «Классификация ОВ и СДЯВ удушающего действия»

1. Вещества с преимущественно удушающим действием:

а) со слабым прижигающим действием (фосген, дифосген, хлорпикрин, хлорид серы),

б) с выраженным прижигающим действием (хлор, треххлористый фосфор, оксихлорид фосфора).

2. Вещества обладающие удушающим и общеядовитым действием:

а) со слабым прижигающим действием (окислы азота, сернистый ангидрид, сероводород),

б) с выраженным прижигающим действием (акрилонитрит).

3. Вещества, обладающие удушающим и нейротропным действием (аммиак).

По строению, физико-химическим свойствам группа интересующих нас веществ весьма неоднородна, биологические эффекты ядов – многообразны.

Поэтому классифицировать их можно лишь на основе преимущественного синдрома, складывающегося при острой интоксикации. Большинство указанных в таблице соединений в малых концентрациях обладают сильным раздражающим действием, при повышении дозы яда развивается токсический отек легких. Многие препараты вызывают также нарушения энергетического обмена.

Некоторые вещества обладают и нейротоксическим действием.

Именно эти нарушения представляют наибольшую опасность для пострадавших: терапия именно этих состояний явится основой оказания помощи пораженным в случае формирования очагов заражения.

Учитывая актуальность проблемы, рассмотрим подробно физико-химические свойства, механизмы, патогенез интоксикации, методы лечения и меры профилактики интоксикаций ОВ и СДЯВ удушающего действия.

УЧЕБНЫЕ ВОПРОСЫ

1. Физико-химические свойства, механизм действия, патогенез, клиника, патогенетическая и симптоматическая терапия веществ с преимущественно удушающим действием.

К этой группе относятся соединения, для которых главным объектом воздействия в организме являются дыхательные пути. Хотя при отравлении развивабтся существенные нарушения функций других органов и систем, гибель пострадавшего в основном связана с острым нарушением внешнего дыхания, а в основе патогенеза интоксикации лежит гипоксическая гипоксия.

Широко используют в промышленности и хозяйственной деятельности классические удушающие вещества: фосген, хлор, хлорпикрин. Особенно велики запасы хлора. Так, на водоочистительной станции крупного города может находиться более 10 тонн этого вещества. При разрушении такого объекта санитарные потери среди населения могут насчитывать несколько десятков человек.

Фосген (дихлорангидрид угольной кислоты) бесцветный газ с запахом гнилых яблок, температура кипения 8,2 С, температура замерзания- 118 С, летучесть при 20 С 6370 мг/л, в газообразном состоянии в 3,5 раза тяжелее воздуха, в воде растворяется плохо, в органических растворителях – хорошо. Нейтрализуется аммиаком и щелочными веществами.

Дифосген (трихлорметиловый эфир хлоругольной кислоты) – бесцветная жидкость с запахом гнилых яблок, удельный вес при 15 С - 1,64, температура замерзания – 57 С, температура кипения – 128 С, летучесть при температуре 20 С 120 мг/л, плотность по воздуху 6,9. Нейтрализуется щелочными веществами и аммиаком.

Хлорпикрин (трихлорнитрометан) – бесцветная жидкость с острым запахом, удельный вес при 0 С 1,69, температура кипения 113 С, температура замерзания – 37 С, летучесть при 20 С 290мг/л. Для нейтрализации используют спиртовой раствор сульфида натрия. Токсичность фосгена и дифосгена достаточно высокая при их применении в виде паров.

Смертельная токсодоза α С t 100 5мг мин/л, средняя смертельная токсодоза α С t 50 3,2 мг мин/л, средняя выводящая из строя токсодоза α С t 50 1,6 мг мин/л.

Хлор – газ желто – зеленого цвета с резким запахом, тяжелее воздуха в 2,5 раза. Хорошо растворим в воде и некоторых органических растворителях. Хорошо адсорбируется активированным углем. Нейтрализуется водным раствором гипосульфита.

Раздражающее действие хлора проявляется при концентрации 0,01 мг/л, а вдыхание хлора в концентрации более 0,1 мг/л опасно для жизни. При ингаляции хлора в очень высоких концентрациях смерть наступает в течение нескольких минут от паралича дыхательного и сосудодвигательного центров. Менее изученным, но также чрезвычайно опасным, являются хлорид фосфора, оксихлорид фосфора и хлорид серы.

Треххлористый фосфор (хлорид фосфора) - применяется для синтеза хлорпроизводных углеводородов, получения других производных фосфора.

Обладает мощным раздражающим действием. В высоких концентрациях вызывает сильное воспалительно-некротическое поражение покровных тканей. Кошки погибают при кратковременном вдыхании паров хлорида фосфора в концентрации 0,5 – 1,0 мг/л. У челоаека острое отравление развивается при вдыхании в течение нескольких минут паров PCL3 в концентрации 0,08 – 0,15 мг/л (для сравнения: вдыхание фосгена в концентрации 0,1 – 0,3 мг/л в течение 15 – 30 мин. безусловно смертельно для человека).

Оксихлорид фосфора – применяется в производстве синтетических красителей и пластмасс. Обладает выраженным местным раздражающим и прижигающим действием. Белые крысы и мыши погибают после 4-х минутного вдыхания воздуха, зараженного парами POCL3 в концентрации 1 мг/л. У человека тяжелое отравление развивается при вождействии паров оксихлорида фосфора в концентрации 0,07 мг/л.

Вещества обладают мутагенной активностью.

Хлорид серы – применяется при вулканизации каучука, при получении CCL4, лаков, используется как инсектицид. Обладает умеренным раздражающим действием на слизистые дыхательных путей, органы зрения. Пары в концентрации 0,85мг/л убивают белых мышей в течение минуты.

Кошки при 15 – минутном воздействии паров хлорида серы в концентрации 0,24 мг/л погибают через несколько дней.

ПРОЯВЛЕНИЯ ИНТОКСИКАЦИИ

В течение интоксикации удушающими ядами принято выделять четыре периода:

1) период контакта с веществом;

2) скрытый период;

3) период токсического отека легких;

4) период осложнений.

Выраженность проявления и длительность каждого периода определяются видом вещества, его концентрацией в окружающем воздухе и временем пребывания пострадавшего в зараженной атмосфере.

Период контакта особенно сильно выражен при отравлении веществами, оьладающими прижигающим действием. При действии паров PCL3, POCL3, S2CL2 в высоких концентрациях возможна быстрая смерть отшокового состояния, вызванного химическим ожогом открытых участков кожи, слизистых верхних дыхательных путей, легких. Наблюдаетс сильная гиперемия, отек кожи лица, некроз конъюнктивы и роговицы, блефароспазм, сильный кашель с отделением кровянистой мокроты, коллапс. На вскрытии – ожег покровных тканей, некроз и отек слизистой полости рта, гортани, трахеи, бронхов, явления бронхопневмонии.

Легкие дегидратированы, уменьшены в размерах, белесоватого оттенка («алебастровые» легкие при отравлении хлором). Выявляются отек мозга, белковая дистрофия клеток печени, эпителия извитых канальцев почек. При действии яда в меньших концентрациях или при поражении веществами со слабо выраженным прижигающим эффектом симптомы интоксикации развиваются после скрытого периода.

Длительность периода зависит от многих факторов и колеблется в интервале от 1 до 24 часов, а иногда и до 48 часов. Основные проявления третьего периода (токсического отека легких) – усиление одышки, носящей инспираторный характер, и появление кашля, сопровождающегося отделением пенистой кровянистой мокроты, количество которой постепенно увеличивается. У пострадавшего развивается цианоз (синяя гипоксия), а в более тяжелых случаях кожа приобретает пепельный оттенок (серая гипоксия). Перкуторно определяется опущение нижних границ легких. Над грудной клеткой выслушиваются влажные хрипы. Максимального уровня процесс достигает к концу первых – началу вторых суток. С 3 – 4 дня заболевания токсический отек легких начинает разрешаться.

  • S: Как называется на латинском языке формообразующие вещества?
  • VII. Побочные действия средств, применяемых для лечения заболеваний глаз
  • Адгезивные системы композитов. Назначение, механизмы взаимодействия с тканями зуба.
  • ОВ удушающего действия широко применялись в Первую мировую войну.

    Фосген – бесцветный газ, обладающий неприятным запахом (запах прелого сена и гнилых яблок), относится к классу нестойких ОВ, в организм проникает только через дыхательные пути.

    Первыми признаками отравления фосгеном являются ощущения характерного неприятного запаха, неприятного вкуса во рту, раздражение глаз и дыхательных путей, кашель, иногда удушье, боли в подложечной области и рвота. Может наступить рефлекторная остановка дыхания.

    После выхода из зоны заражения указанные явления вскоре исчезают. Это скрытая стадия заболевания, или период мнимого благополучия, который продолжается от 2 до 8 ч и более. Диагностика поражения в этот период трудна, но возможна. У пораженных сохраняется небольшая одышка, частота дыхания увеличивается, а пульс немного урежается, от обмундирования и волос исходит характерный запах фосгена. У курильщиков наблюдается отвращение к табаку. Затем наступает период развития отека легких с выраженной одышкой и выделением большого количества пенистой, иногда с примесью крови, мокроты (1–1,5 л).

    Токсический отек легких полностью развивается к концу 1–2-х суток. Развивается кислородное голодание. Кожные покровы и слизистая оболочка становятся цианотичными, иногда пепельно-серого цвета с землистым оттенком. Отмечаются сгущение крови, повышение температуры тела, снижение артериального давления, частый нитевидный пульс. Смерть наступает от паралича дыхательного и сосудо-двигательного центров.

    Хлор – газ зеленовато-желтого цвета с резким запахом, тяжелее воздуха в 2,5 раза. Хорошо растворим в воде, образуя хлористый водород и хлорноватистую кислоту.

    Характер поражения хлором зависит от его концентрации во вдыхаемом воздухе. Малые концентрации обычно легко переносятся.

    При вдыхании хлора в средних концентрациях прежде всего появляются симптомы раздражения слизистой оболочки глаз, носа, горла: жжение, резь в глазах, чувство стеснения и боль за грудиной, першение в горле. Отмечается сильное слезотечение, сухой мучительный кашель и периодически появляющееся удушье. Дыхание затрудненное, поверхностное и болезненное. Пораженный возбужден, реже, напротив, подавлен. Через 2–3 часа развивается отек легких.

    Отравление хлором в очень высоких концентрациях может закончиться смертью в течение нескольких минут (молниеносная смерть) от паралича дыхательного и сосудодвигательного центров. Кроме того, возможна рефлекторная остановка дыхания.

    Первая медицинская помощь. Необходимо надеть противогаз и вынести пораженного из очага заражения. При раздражении глаз надо промыть их водой. В случае остановки дыхания производят искусственное дыхание. По возможности следует сразу отправить пораженного в ОМО на санитарном или попутном транспорте, так как после окончания скрытого периода развивается отек легких, а эвакуация таких пораженных в пешем строю резко отягощает течение поражения.

    Доврачебная помощь. Дополнительно к указанным мероприятиям показано вдыхание кислорода по 5–10 мин. При затруднении дыхания и цианозе вводят кордиамин, кофеин-бензоат натрия.

    Первая врачебная помощь. Кислородная терапия, вдыхание противовспениваю-щих средств (паров 25–30%-ного раствора этанола); кровопускание (300–500 мл) показано лишь при удовлетворительном артериальном давлении; внутривенное введение глюкозы и кальция хлорида, сердечные и дыхательные стимуляторы, внутримышечно сульфокамфокаин 10%-ный раствор в ампулах по 2–4 мл.

    Сероводород – бесцветный газ с запахом тухлых яиц. Тяжелее воздуха в 1,2 раза. Растворим в воде и спирте. С воздухом образует взрывоопасные смеси.

    В организм проникает через органы дыхания и через кожу. Действует раздражающе на слизистые верхних дыхательных путей и глаз.

    Вдыхание яда в небольших концентрациях сопровождается раздражением глаз и верхних дыхательных путей. Появляется слезотечение, насморк, кашель. При более высоких концентрациях – жжение и боль в зеве, конъюнктивит, тошнота, рвота, одышка, боль за грудиной, слабость, головная боль и головокружение. Вдыхание сероводорода в высоких концентрациях ведет к воспалению бронхов, легких или к развитию отека легких.

    После нескольких вдохов яда в очень высоких концентрациях может наступить смерть от паралича дыхательного и сосудодвигательного центров.

    9. промыть водой глаза и кожу лица;

    10. надеть противогаз или ватно-марлевую (тканевую) повязку, смоченную 2–3%-ным раствором питьевой соды;

    11. при проявлении признаков общеядовитого действия заложить в подмасочное пространство противогаза вскрытую ампулу с амилнитритом;

    12. промыть открытые участки кожи большим количеством воды;

    13. немедленно эвакуировать из зоны заражения на носилках.

    Доврачебная помощь:

    14. снять противогаз;

    15. освободить от стесняющей дыхание одежды, обеспечить покой, согревание;

    16. дать вдыхать амилнитрит на ватке или вскрытой ампуле, при необходимости – повторно;

    17. промыть глаза 2%-ным раствором питьевой соды;

    18. открытые участки тела промыть водой с мылом;

    19. ингаляция кислорода;

    20. при остановке дыхания – искусственная вентиляция легких (ручные дыхательные приборы);

    21. немедленно эвакуировать лежа на носилках на первый этап медицинской эвакуации или в ближайшее лечебное учреждение.

    Аммиак – бесцветный газ с резким запахом. Легче воздуха почти в 2 раза. В атмосфере аммиак взаимодействует с влагой воздуха, в результате чего образуется туман гидроокиси аммония (нашатырный спирт). Хорошо растворим в воде. Взрывоопасен в смеси с воздухом.

    Аммиак обладает сильным раздражающим и прижигающим действием. При попадании в глаза может вызвать тяжелые ожоги с потерей зрения. Поражения кожи зависят от концентрации в воздухе – от легкого покраснения до образования пузырей.

    При нахождении человека в атмосфере с высокими концентрациями аммиака отмечается боль в глазах, сильное слезотечение, кашель, боль за грудиной. Из-за сильного раздражения верхних дыхательных путей может быть спазм голосовой щели. Через несколько часов развивается токсический отек легких.

    При действии аммиака в очень высоких концентрациях в течение нескольких минут появляется мышечная слабость, нарушается координация движений. Сильное возбуждение, приступы судорог и состояние буйного бреда. Смерть наступает от острой сердечной недостаточности, отека легких.

    Первая медицинская помощь в очаге поражения:

    22. обильно промыть глаза и кожу лица водой;

    23. надеть противогаз или ватно-марлевую (тканевую) повязку, смоченную 5%-ным раствором лимонной (уксусной) кислоты;

    24. обильно промыть водой открытые участки кожи;

    25. немедленно эвакуировать из зоны заражения.

    Первая медицинская и доврачебная помощь вне зоны заражения:

    26. снять противогаз;

    27. обильно промыть глаза и кожу лица водой;

    28. освободить от стесняющей дыхание одежды;

    29. обеспечить покой и согревание;

    30. при резких болях в глазах закапать 2%-ный раствор новокаина либо какой-нибудь другой анестетик), защитить глаза от света;

    32. на пораженные участки кожи – примочки из 5%-ного раствора лимонной (уксусной) кислоты;

    33. немедленно эвакуировать лежа на первый этап медицинской эвакуации или в ближайшее лечебное учреждение.

    Отравляющие вещества удушающего действия, при вдыхании которых поражаются верхние дыхательные пути и легочные ткани. Основные представители фосген и дифосген.

    Дифосген бесцветная маслянистая жидкость с запахом прелого сена, температура кипения 128°С, замерзания минус 57°С.

    По мнению военных специалистов, в настоящее время фосген не может рассматриваться как эффективное средство химической войны, так как он имеет низкую токсичность (в 30 раз меньше токсичности зарина), скрытый период действия и запах.

    Фосген (СС) - бесцветный газ с запахом прелого сена, сжижающийся при температуре 8°С. Замерзает фосген при температуре около минус 100,0°С.

    В момент применения фосген находится в состоянии пара и не заражает обмундирование, вооружение и технику.

    Пары фосгена в 3,5 раза тяжелее воздуха. Фосген ограниченно растворяется в органических растворителях. Вода, водные растворы щелочей, аммиачная вода легко разрушают фосген (аммиачную воду можно использовать для дегазации фосгена в закрытых помещениях). Защитой от фосгена служит противогаз.

    Фосген обладает удушающим действием со скрытым периодом 4 - 6 часов. Смертельными являются концентрации паров фосгена в воздухе 3,0 миллиграмма в литре при дыхании в течение 2 мин. Фосген обладает кумулятивными свойствами (можно получить смертельное поражение при длительном вдыхании воздуха, содержащего малые концентрации паров фосгена). Воздух, содержащий пары фосгена, может застаиваться в оврагах, лощинах, низинах, а также в лесу и населенных пунктах.

    Первыми признаками поражения ОВ удушающего действия являются сладковатый привкус во рту, чувство саднения в горле, кашель, головокружение, общая слабость. могут быть также тошнота, рвота, болезненность под ложечкой. поражение слизистых оболочек глаз выражено нерезко.

    После выхода из зараженной местностиявления поражения исчезают, наступает скрытый период действия, продолжающийся 6 8 часов. Однако уже в это время при переохлаждении и мышечном напряжении появляются синюшность и отдышка. Затем возникают и развиваются отек легких, резкая одышка, кашель, обильное выделение мокроты, головная боль, повышение температуры. Иногда бывает и более тяжелая форма отравления полное расстройство дыхания, упадок сердечной деятельности и смерть.

    Фосген может применяться в авиационных химических бомбах и минах.

    Обнаруживается фосген приборами химической разведки (индикаторной трубкой с тремя зелеными кольцами) и автоматическими газосигнализаторами ГСП-1М, ГСП-11.

    Первая медицинская помощь. На пораженного немедленно надевают противогаз и обязательно выводят (выносят) его из очага химического заражения, независимо от тяжести состояния. Самостоятельное передвижение пораженного приводит к резкому ухудшению течения отравления, развитию отека легких и смерти. в прохладное время года пораженного следует тепло укрыть и по возможности согреть. После выноса из очага химического заражения всем пораженным необходимо предоставить полный покой и облегчить дыхание, расстегнув воротники и одежду, а если возможно, снять ее.

    При поражении удушающими ОВ искусственное дыхание делать нельзя (в связи с наличием отека легких), в случае полной остановки дыхания производить искусственное дыхания до восстановления естественного.

    Защита от фосгена - противогаз, убежище и техника, оснащенные фильтровентиляционными установками. Фосген обнаруживается индикаторной трубкой с тремя зелеными кольцами приборами ВПХР и ППХР

    Отравляющие и сильнодействующие вещества удушающего действия

    1. Общая токсикологическая характеристика отравляющих и сильнодействующих веществ удушающего действия

    Механизм действия, патогенез интоксикации отравляющих веществ удушающего действия


    1. Общая токсикологическая характеристика отравляющих и сильнодействующих веществ удушающего действия

    Отравляющие вещества удушающего действия хлор, фосген, дифосген явились родоначальниками химического оружия, одного из трех видов оружия массового поражения. Основными представителями этой группы являются фосген и дифосген. Удушающим действием обладают многие летучие вещества, которые также применялись в боевой обстановке (хлор, фтор, окислы азота, триэтиламин, хлорпикрин и др.).

    В годы первой мировой войны из 1 млн 300 тыс. человек - общего числа пострадавших от химического оружия, из которых около 130 тыс. погибло, 80 % составили пораженные фосгеном.

    Общей характерной особенностью отравляющих веществ этой группы являются их высокая летучесть и способность вызывать при дыхании специфическое поражение легочной ткани с развитием токсического отека легких. Это явилось причиной названия этой группы ОВ - удушающими отравляющими веществами. Такими свойствами обладают фосген (по шифру США - CG, дифосген - DP), а также некоторые фторсодержащие соединения.

    Родоначальником этой группы ОВ считается хлор. Именно хлор был впервые применен немцами в качестве боевого отравляющего вещества.

    апреля 1915 года немцы провели первую газобаллонную атаку с хлором против англо-французских войск. На 6-ти километровом фронте в течение 5-8 минут было выпущено 180 тонн хлора. Результатом этой атаки явилось - 15 тыс пораженных из которых свыше 52тыс погибло, а половина оставшихся в живых стали инвалидами.

    В декабре 1915 года газобаллонная атака была проведена против русских войск. 9 тыс пострадавших, более 1 тыс со смертельным исходом - итог первого случая применения химического оружия против русских войск.

    В годы первой мировой войны состоялось более 50 немецких газобалонных атак, 20 французских и 150 английских.

    В 1935 году фашистская Италия многократно использовала химическое оружие против Абиссинии (Эфиопии). Наряду с кожно-нарывными ОВ было использовано более 200 т ОВ удушающего действия. Общие потери от химического оружия составили более 250 тыс человек.

    Несмотря на успехи первых газобаллонных атак, этот метод химической войны имел ряд очевидных недостатков. Для достижения боевой эффективности требовались строго определенные метеоусловия; круг пригодных для применения ОВ ограничился газообразными веществами. Высока была вероятность поражения собственных войск и др.

    Это вызвало необходимость совершенствования методов применения химического оружия. В 1917 году в армии Великобритании появились первые газометы с дальностью стрельбы химическими минами на расстояние 1-2 км. Вес химических мин составлял от 9 до 228 кг. В том же году на вооружение армии Германии поступили 160-ти и 180-ти мм газометы с дальностью стрельбы до 2 и 1,6 км соответственно.

    Газометы дали новый толчок развитию артиллерийских средств применения отравляющих веществ. С середины 1916 года воюющие стороны начали широко применять химические артиллерийские снаряды.

    Несмотря на то, что фосген и дифосген по токсичности и, следовательно, боевым возможностям значительно уступают таким ОВ как, например, фосфорорганические отравляющие вещества, данная группа ОВ не потеряла актуальности и в настоящее время.

    Причиной этому является:

    Дешевизна и сравнительная простота производства - практически любая страна с развитой химической промышленностью способна в короткие сроки наладить массовое производство отравляющих веществ этой группы, так как фосген и его аналоги являются промежуточными веществами при производстве многих химических соединений.

    В виду сложности и не изученности патогенеза отсутствует специфическая антидотная терапия.

    Фосген, являясь в 2,5 раза тяжелее воздуха (дифосген - в 26,9 раз) способен накапливаться в оврагах, низинах, подвалах где как правило размещаются пункты сбора раненных и медицинские пункты.

    Особенностью этих ОВ являются также их способность "пробивать" противогаз при высоких концентрациях.

    Отравления подобными ОВ удушающего действия могут быть при работах с компонентами ракетных топлив, в частности, гидразином и другими окислителями (окислы азота, азотная кислота).

    В связи с этим, каждый врач должен хорошо знать свойства этих ОВ, механизм их действия и патогенез интоксикации, клинику и лечение пораженных фосгеном, дифосгеном и другими удушающими веществами.

    Классификация отравляющих веществ удушающего действия

    По способности оказывать раздражающий эффект ТХВ разделяются:

    ) Вещества, у которых раздражающее действие не выражено - фосген, дифосген.

    ) Вещества удушающего действия с выраженными раздражающим эффектом - хлор, хлорид серы, серная и соляная кислоты.

    Вещества, обладающие удушающим и выраженным резорбтивным эффектом:

    а) общетоксическим резорбтивным действием - акрилонитрил, изоцианаты, азотная кислота, сероводород, сернистый ангидрид, хлорпикрин, люизит и др.;

    б) с алкилирующим действием - метаболические яды - окись этилена, окись пропилена, диметилсульфат;

    в) с нейротропным эффектом - аммиак, бромметил, гидразины и др. Физико-химические свойства, токсичность фосгена и дифосгена

    Фосген был получен в 1811 году Дж.Дели (Англия), который дал название новому веществу "фосген" -"светорожденный", т.к. соединение возникает при взаимодействии углерода и хлора на солнечном свету.

    солнечный

    СО + Cl2 СОCl2

    отравляющий сильнодействующий вещество удушающий

    Фосген является хлорангидридом угольной кислоты. Представляет собой бесцветный газ или жидкость с температурой кипения 8,2 С, с запахом прелого сена или гнилых яблок.

    Плотность в 3,5 раза выше плотности воздуха (пары фосгена в 3,5 раза тяжелее воздуха).

    Ограничено растворяются в воде, одновременно разлагаясь при этом. Растворимость фосгена в воде при температуре 20 С составляет 0,9 %. В органических растворителях, дизельном топливе, жирах, маслах растворяется хорошо. Фосген растворим также во многих отравляющих и жидких дымообразующих веществах.

    Обладает очень высокой летучестью, которая даже в зимнее время достаточна для достижения поражающих концентраций. При температуре минус118 С фосген превращается в белую кристаллическую массу.

    В воде быстро гидролизуется:

    ОCl2 + H2O ----- CО2 + 2 HCl

    Быстро обезвреживается щелочами и аммиаком:

    СОCl2 + 4 NaOH Na2CO3 + 2 NaCl + 2 H2O

    СОCl2 + 4 NH3 ------ СO(NH2)2 + 2 NH4Cl

    Так как эти ОВ нестойкие, санитарную обработку, пораженным прибывшим из химического очага как правило проводить нет необходимости.

    Дифосген - трихлорметиловый эфир фосгена. По молекулярному составу представляет удвоенную молекулу фосгена (COCl2)2.

    Бесцветная, легкоподвижная жидкость с таким же запахом.

    Удельный вес 1,7, температура кипения 128 С. Пары в семь раз тяжелее воздуха. Дифосген имеет большую стойкость, сохраняя поражающую способность летом до 2-3 часов, в лесу - до 10 часов, зимой - до суток. Замерзает при температуре минус 570С.

    Химические свойства аналогичны свойствам фосгена.

    Гидролизуется водой, обезвреживается щелочами. По действию на организм аналогичен фосгену. Вызывает токсический отек легких только при вдыхании паров, жидкое ОВ не всасывается в кожу.

    При попадании на кожу вызывает слабое ее раздражение, не имеющее характера ожога. Пары дифосгена вызывают слабое раздражение дыхательных путей.

    Токсичность фосгена и дифосгена примерно одинакова и достаточно высока при применении в виде паров. Вызывают поражения только ингаляционным путем.

    Смертельная токсическая доза при экспозиции 1 мин. LCt100 - 5 мг/л/мин. Условно смертельная доза LCt50 - 3,2 мг/л/мин, средневыводящая ICt50 - 1,6 мг/л/мин. Концентрация паров фосгена 0,3 мг/л вызывает смертельное поражение при экспозиции 15 мин.

    Хлорпикрин - CCl2NO2 - трихлорнитрометан, желтоватая жидкость с резким раздражающим запахом. Температура кипения 113 С, температура замерзания минус 690 С. Удельный вес 1,66, пары в 5,7 раз тяжелее воздуха. Липоидотропное вещество. Стоек. Химически малоактивное вещество. Не гидролизуется при кипячении. Разрушается раствором щелочей; лучше их спиртованным или водноспиртованным растворами. Применяется для дератизации и при промысле пушного зверя. Минимально действующая концентрация 0,002 г/м3. Поражение органов дыхания развивается при концентрации 0,1 г/м3 и выше. При концентрации 2 г/м3 и экспозиции 10 мин. - смертельное поражение с развитием токсического отека легких.

    Хлор (Cl2) - газ желто-зеленого цвета с резким запахом, тяжелее воздуха в 2,5 раза. Хорошо растворим в воде и некоторых органических растворителях. Хорошо адсорбируется активированным углем. Химически очень активен. При растворении в воде взаимодействует с ней, образуя хлористоводородную и хлорноватистую кислоты. Хлорноватистые кислоты при разложении выделяют кислород, чем обусловлено дезинфицирующее и отбеливающее действие хлора.

    Нейтрализуется хлор водным раствором гипосульфита натрия. Влажный хлор очень агрессивен.

    Раздражающее действие хлора проявляется при концентрации 0,01 г/м3, а вдыхание хлора в концентрации более 0,1 г/м3 опасно для жизни. Характер и тяжесть интоксикации хлором определяется концентрацией его во вдыхаемом воздухе. Чем выше концентрация хлора во вдыхаемом воздухе, тем большая доза ОВ повадает в организм и, соответственно, развивается более тяжелая степень поражения.

    Аммиак - получен английским ученым Д. Пристоли в 1774 году, при действии гашеной извести на хлористый аммоний. (Нашатырный спирт - 28-29% раствор аммиака). Широко используется в химической промышленности для производства азотной кислоты и ее солей, нитрата и сульфата аммония, циановодорода, мочевины, карбоната натрия; при производстве удобрений; в органическом синтезе; в медицине - в виде нашатырного спирта; в промышленности - при серебрении зеркал; в качестве хладагента в холодильниках; при крашении тканей.

    Применяется также в кожевенной, текстильной, бумажной промышленности, производстве искусственного волокна, мыловарении, в алюминиевом производстве и др.

    Путь поступления - ингаляционный, пероральный.

    Физико-химические свойства аммиака

    Аммиак бесцветный газ, обладающий удушливым резким запахом нашатырного спирта. Едкий на вкус. Аммиак в 2 раза легче воздуха, однако образующееся облако воздушно-аммиачной смеси тяжелее окружающего воздуха.

    Аммиак весьма реакционно способен, вступает в реакции замещения, присоединения, окисления. На воздухе быстро переходит в карбонат аммония, горит в кислороде с образованием воды и азота, реагирует с кислотами и металлами.

    Токсичность аммиака

    ПДК аммиака - 0,2мг/л. Смертельная доза для человека при экспозиции 0,5 - 1 часа, составляет 1500 - 2700 мг/м2. При действии высоких концентраций вызывает поражение кожных покровов, возможны химические ожоги глаз.

    Азотная кислота - летучая, бесцветная жидкость, дымит на воздухе с образованием желтого облака, состоящего из двуокиси азота, воды и кислорода. Токсичность азотной кислоты и ее окислов чрезвычайно велика. ПДК равна 0,005 мг/л. Концентрация 0,1-0,3 мг/л опасна даже при небольшой экспозиции. Пары окислов азота тяжелей воздуха в 3,2 раза, растворяясь в воде образуют азотную и азотистую кислоты и их соли, нитриты и нитраты. Смеси азотной кислоты и окислов азота с органическими веществами взрывоопасны и самовоспламеняются.

    Патогенез поражения азотной кислоты

    В остальном, клиника токсического отека при поражении азотной кислотой и окислами азота напоминает клиническую картину поражения фосгеном.

    При попадании на кожу в капельно-жидком состоянии, азотная кислота образует сухой струп, окрашенный, благодаря ксантопротеиновой реакции, в зеленовато-желтый цвет. Ткани подвергаются коагуляционному некрозу, который захватывает сосочковый слой кожи, а иногда, распространяется и глубже. Вокруг участка некроза расположена зона лейкоцитарной инфильтрации, гиперемии, отека. Заживление идет вяло, длительность его при тяжелых ожогах составляет 40-50 дней и заканчивается образованием рубца.

    При глубоких обширных ожогах развивается ожоговая болезнь.

    Поражение глаз

    Чрезвычайно опасным является поражением азотной кислотой глаз. Любой ожог глаз следует рассматривать как тяжелое поражение, при котором прогноз весьма неблагоприятен. Даже при внешнем легком кератоконъюктивите через несколько дней может наступить омертвение роговицы с образованием стойкого бельма. При попадании в глаза больших количеств кислоты развивается панофтальмит (воспаление всех оболочек глаза), требующей в последующем энуклеации.

    Неотложная помощь и лечение при поражении азотной кислотой

    1. Немедленное прекращение поступления яда в организм - надевание противогаза, эвакуация из зоны заражения. Кожу и глаза при попадании на них кислоты, необходимо обильно и длительно (не менее 5 мин.) промыть струей воды. После промывания глаз закапывают 2% раствор новокаина и за веко закладывают 5% синтамициновую эмульсию. На места ожогов кожи накладывают асептические повязки.

    Для устранения раздражения верхних дыхательных путей при меняется вдыхание фициллина, назначают кофеин, щелочные ингаляции.

    В остальном, терапия соответствует общим принципам ликвидации отека легких, других симптомов интоксикации и профилактике осложнений.

    Основными патогенетическими направлениями являются:

    уменьшение объема циркулирующей крови;

    укрепление сосудистой стенки;

    борьба с гипоксией;

    борьба с ацидозом и электролитными нарушениями;

    улучшение микроциркуляции.

    2. Механизм действия, патогенез интоксикации отравляющих веществ удушающего действия

    Наблюдение за клиникой поражения удушающего действия показали, что ведущим синдромом является развитие токсического отека легких.

    Токсический отек легких - сложный симптомокомплекс в основе которого лежит диффузное поражение легких, которое заключается в поражении альвеолярно-капиллярных мембран, прежде всего клеток мишеней - альвеолоцитов I и II типов и клеток эндотелия. Первичные биохимические изменения в них заключаются:

    при поражении фосгеном в алкилировании амино- (NH), гидрокси (OH) и тиоловой (SH) группы протеинов клеток мишеней;

    при поражении диоксидом азота, галогенами происходит внутриклеточное образование свободных короткоживущих радикалов, что приводит к переокислению клеточных липидов.

    Алкилирование и периксное окисление липидов является началом мембраннных биохимических изменений в тканях. В дальнейшем эти изменения приводят к интоксикации аденилатциклазы, падению содержания цАМФ и внутриклеточной задержке воды. Развивается внутриклеточный отек. Все эти процессы приводят к повреждению субклеточных органелл, которое приводит к высвобождению лизосомных ферментов, нарушению синтеза АТФ и лизису клеток-мишеней. Продукты поражения клеток-мешеней, активируют фосфолипазу, что приводит к нарушению целостности мембран. Активация фосфолипазы приводит также к дополнительному высвобождению гистамина и других высокоактивных веществ. Гистамин увеличивает проницаемость капилляров.

    Отек клеток и их лизис приводит к нарушению метаболических процессов и накоплению в крови недоокисленных продуктов - молочной, ацетоуксусной, бета-оксимаслянной кислот, ацетона. В результате рН крови снижается до 7,2-7,0, что приводит к увеличению проницаемости мембран, развитию ацидоза и интесртициального отека.

    В конце скрытого периода усиливающийся интерстициальный отек приводит к спадению большого количества капилляров и ухудшению кровоснабжения отдельных участков легочной ткани. Ишимия и гипоксия ведут к нарушению метаболической функции легких и активации кининовой системы. Выделяющийся брадикинин существенно увеличивает проницаемость мембран, в том числе и для белков.

    В результате этих процессов легочные альвеолы заполняются отечной жидкостью (транссудатом), что приводит к нарушению внешнего легочного дыхания с развитием острого кислородного голодания и резким нарушением функций всего организма.

    Механизм действия фосгена и патогенез токсического отека легких до сих пор точно не изучен. Согласно "механической теории", существующей первоначально, фосген при взаимодействии с водой образует соляную кислоту, которая оказывает поражающее действие на поверхностно-активные вещества легочной ткани. В результате последние створаживаютя и стекают. Освободившийся от защитного слоя эпителий альвеол поражается фосгеном. Жидкость заполняет просветы альвеол, перегородки увеличиваются в 5-6 раз, появляются механические повреждения - разрывы альвеолярно-капиллярной мембраны. Однако, патогенез токсического отека легких нельзя полностью объяснить только местными процессами, связанными с нарушением проницаемости альвеолярно-капиллярных мембран. Этот механизм имеет место только при высоких концентрациях отравляющего вещества.

    В связи с этим, в дальнейшем была выдвинута нервно-рефлекторная теория патогенеза интоксикации (Лазарис Я.А., Серебровская И.А.). Согласно этой теории, фосген воздействуя на нервные окончания рецепторов легких в альвеолах, вызываяет их сильное раздражение. По центростремительным нервам (афферентные волокна) nervus vagus поток импульсов следует в гипоталямус (подкорковые образования, расположенные ниже четверохолмия рядом с гипофизом), активизируется гиалуронидаза. Ответным сигналом является выпотевание жидкости с целью удаления раздражителя. Первоначально, этот механизм имеет выраженный защитный характер - выпотевшая жидкость смывает отравляющее вещество, уменьшает раздражение периферических нервных окончаний. Однако, в связи с тем, что фосген продолжает оказывать раздражающее действие, поток импульсов приобретает патологический характер - появляется патологическая импульсация. В результате учащается дыхание и уменьшается его глубина (рефлекс Геринга-Брейера), что приводит к снижению легочной вентиляции, развитию рефлекторной гипоксии. Объем выпотевающей жидкости продолжает увеличиваться, в результате набухшие перегородки становятся рыхлыми, начинают разрываться. С эксудатом выходит большое количество белка. В отечной жидкости выявляются не только мелкодисперсные, но и крупнодисперсные фракции белка. В результате, отечная жидкость приобретает пенистый характер, выполняет весь просвет альвеол, трудно выделяется при кашле. Это приводит к развитию гипоксической гипоксии.

    Как указывалось выше, выделяющийся в тканях легких гистамин и другие биологически активные вещества еще больше повышает проницаемость перегородок, что значительно ускоряет развитие отека.

    Выпотевание плазмы в просвет альвеол приводит к сгущению крови, повышение ее вязкости. Это обуславливает замедление тока крови, развитие коллапса и застойного типа циркуляторной гипоксии.

    Накопление в крови недоокисленных продуктов приводит к развитию ацидоза, это в свою очередь снижает кислородосвязывающую функцию гемоглобина и способствует развитию гемической гипоксии.

    Одновременно, в результате нервно-рефлекторного влияния происходит выброс из гипоталомических центров симпатомиметиков, что приводит к резкому подъему внутрисосудистого давления. В следствие гипоксии, отека и лизиса клеток-мишеней в легких нарушается инактивация вазоактивных веществ - норадреналина, серотонина, брадикинина, что приводит к существенному увеличению их концентрации в крови, усилению вазоконстрикции, увеличению гидростатического давления в малом круге кровообращения.

    Гипертензия в малом круге кровообращения на фоне повышенной проницаемости капилляров приводит к усилению выпота плазмы в интерстиций.

    В патогенезе токсического отека легких большое значение имеет нарушение водно-солевого обмена. Важная роль в его регуляции принадлежит минералокортикоиду - альдостерону.

    Вследствие повышения вязкости крови раздражаются волюнорецепторы сосудов. Поток импульсов по n. vagus следуют в заднюю долю гипофиза. Ответной реакцией является усиление выброса надпочечниками глюкокортикоида - альдостерона, который усиливает реабсорбцию натрия в почечных канальцах и обуславливает накопление ионов Na+2 в клетках альвеол и выход ионов К. Ионы Na, притягивая к себе воду, усиливают развитие отека легких.

    Кроме того, усиливаются выделение антидиуретического гормона (вазопрессина), который способствует задержке мочеотделения и ускоряет скопление жидкости в тканях.

    От гипоксии, прежде всего, страдает центральная нервная система, развивается нервно-рефлекторные реакции, гуморальные сдвиги - возбуждается симпато-адреналовая система, высвобождаются катехоламины. Последние способствуют перераспределению крови, кровь накапливается в малом кругу кровообращения, что обуславливает развитие циркуляторной гипоксии.

    Развитие отека легких приводит к смещению органов средостения, сердце работает в крайне неблагоприятных условиях. Усиленная выработка и выброс гистаминоподобных веществ обуславливает спазм сосудов сердца и ишемию миокарда. Развивается ишемическая форма гипоксии.

    Важное значение в патогенезе отека легких принадлежит сурфактантной системе (от англ. surface - поверхность). Сурфантант - поверхностно-активное вещество (ПАВ) состоит из нескольких компонентов: липидов, мукополисахаридов и белков.

    Сурфактант снижает силу поверхностного натяжения в альвеолах на границе воздух-вода, таким образом, препятствует спадению ткани легкого, развитию ателектаза и выпотеванию жидкости в альвеоле. Работами Серебровской И.А. установлено, что фосген инактивирует сурфактант, снижает его синтез в альвеолах, что обуславливает развитие отека легких и ателектаза альвеол. Кортикортикоиды усиливают синтез сурфактанта.

    Большое значение в патогенезе интоксикации фосгеном придается брадикинину (кининовой системе).

    Брадикинин - полипептид из 9 аминокислот, сосудорасширяющее вещество, повышает проницаемость капилляров (в 10-15 раз сильнее гистамина), обуславливает спазм в бронхах, усиливает воспалительные процессы в легких и ускоряет развитие отека.

    С целью ликвидации интерстициального отека, компенсаторно усиливается скорость лимфооттока, при тяжелых повреждениях более чем в 10 раз. Однако лимфатические сосуды не могут длительное время выполнять работу при значительной нагрузке и в течение 1-3 часов (при тяжелых поражениях) развивается декомпенсация лимфатической системы. При этом интерстициальный отек резко нарастает, жидкость поступает в полость альвеол, развивается альвеолярная фаза отека, которая обуславливает гипоксическую гипоксию, так называемую "синюю" форму гипоксии.

    При прогрессировании процесса, в ответ на угрозу потери жидкости, в ряде случаев развивается диссеминированное внутрисосудистое свертывание крови (ДВС-синдром) в значительной степени повышается опасность тромбообразования.

    Всем этим процессам в значительной степени способствует физическая нагрузка, переохлаждение, психическое перенапряжение, которые усиливают перераспределение крови, концентрацию ее в малом круге кровообращения, способствуя развитию отека легких.

    Развивающееся при этом состояние принято обозначать термином "респираторный дистресс - синдром (взрослых) химической этиологии" (РДСВ). Деструкция ткани легких, сопровождающаяся образованием агресивных веществ, вызванная чрезвычайно токсичными отравляющими веществами удушающего действия, вызывает одну из самых тяжелых форм дыхательной недостаточности. Скорость развития РДСВ зависит от уровня и выраженности диструкции клеточных элементов аэрогематического барьера. Она велика при действии веществ, повреждающих преимущественно альвеолярный эпителий (галогены, оксиды азота, серы и др.). При ингаляции веществ медленного действия (фосген, дифосген, кислород) определяющим является нарушение структуры и функции эндотелия капилляров легких.

    Таким образом, подводя итог по патогенезу интоксикации можно сделать заключение, что в основе патогенеза поражения ОВ удушающего действия лежит смешанный тип гипоксии (гипоксическая гипоксия - в результате заполнения альвеол трансудатом; циркуляторная гипоксия - в результате сгущения крови, замедление тока крови; ишемическая гипоксия - в результате падение сосудистого тонуса; гемическая гипоксия - в результате ацидоза и ухудшения кислородосвязывающей функции гемоглобина крови).

    Список использованных источников

    1. Александров В.Н., Емельянов В.И. Отравляющие вещества. - М.,1990 г.

    Бова А.А., Горохов С.С., Яблонский В.Н. Военная токсикология и токсикология экстремальных ситуаций.- Мн., 2000.

    Богоявленский В.Ф., Богоявленский И.Ф. Острые отравления: Диагностика и доврачебная помощь. - СПб.,1999.

    Гембицкий Е.В.,Комаров В.И.Военно-полевая терапия. - М., 1983.

    Ганжара П.С., Новиков А.А. Учебное пособие по клинической токсикологии. - М., 1979.

    Дубицкий А.Е., Семенов И.А., Чепкий Л.П. Медицина катастроф. - Киев, 1993.

    Жидков С.А., Шнитко С.Н. Военно-полевая хирургия. - Мн.,2001.

    Каракчиев Н.И. Военная токсикология и защита от ядерного и химического оружия. - Ташкент, 1988.

    Основным представителем ОВ удушающего действия является фосген (хлорокись углерода). Фосген является быстро испаряющейся жидкостью. При 30-минутной экспозиции концентрация 0,36 мг/л является смертельной. Фосген - нестойкое 0В. Отравление возникает при его поступлении через органы дыхания.

    Клиника поражения фосгеном зависит от концентрации яда и продолжительности действия. Особенно опасна тяжелая степень отравления. В ней выделяют четыре стадии: 1) стадия рефлекторных нарушений; 2) стадия мнимого благополучия, или скрытый период; 3) стадия токсического отека легких 4) стадия восстановления нарушенных функций, или период выздоровления. В тех случаях, когда лечение неэффективно или не проводилось, выраженный токсический отек легких заканчивается, как правило, смертью пострадавших. В первой стадии больные жалуются на небольшое раздражение слизистой оболочки глаз и носа, ощущение запаха прелого сена или гнилых яблок, неприятный вкус во рту и головные боли. Иногда пострадавшие возбуждены, дыхание учащено, замедлен. Эти явления держатся 10-30 мин. и постепенно стихают. Наступает стадия мнимого благополучия, которая продолжается в среднем 4-6 час. В это время пострадавшие жалоб не предъявляют и кажутся здоровыми. Любая физическая нагрузка вызывает одышку и лица. В третьей стадии состояние больного значительно ухудшается, усиливается одышка. Отмечается наличие обильного количества крепитирующих и влажных в разных отделах легких. Больные жалуются на общую слабость, головные боли и мучительный кашель с мокротой. Дыхание становится шумным, клокочущим. Границы сердца расширены, сердечные тоны приглушены. Пульс учащен, кровяное давление понижено, повышается до 38-39°. Сознание временами затемнено. Увеличивается вязкость крови и скорость ее свертывания. Отмечается акроцианоз и синюшность видимых слизистых оболочек- «синяя форма гипоксии». На этом фоне может развиться острая сердечно-сосудистая недостаточность; кожные покровы приобретают пепельно-серый цвет, на лбу выступает липкий , конечности холодные, пульс нитевидный, кровяное давление катастрофически падает. Дыхание шумное, клокочущее, периодического типа. Сознание отсутствует. Развивается так называемая серая форма гипоксии, больной может погибнуть. Продолжительность третьей стадии при условии проведения соответствующего лечения в среднем составляет двое суток. При благоприятном исходе все основные явления интоксикации начинают постепенно уменьшаться. Полное выздоровление (четвертая стадия) наступает через несколько недель. Возможны осложнения, развитие пневмоний и тромбоэмболических процессов. Поэтому больным без разрешения врача запрещается вставать с постели.

    При легкой и средней степени поражения фосгеном менее четко выражены симптомы стадии рефлекторных нарушений, продолжительность периода мнимого благополучия увеличивается при средней степени до 4-10 час, в легких случаях отравления - до 8-12 час. Отек легких не развивается вовсе (легкая степень) или бывает очаговым, локальным (при средней степени). Нарушения и сдвиги со стороны крови менее выраженные. Исходы поражений благоприятны, болезнь заканчивается на 3-5-й день (при легких степенях) и на 10-15-й день (при средней степени) отравления.

    Механизм токсического действия фосгена полностью не установлен.

    Лечение . Специфических средств лечения (антидотов) нет. Лечение направлено на проведение следующих мероприятий: 1) прекращение поступления ОВ в организм - надевание или эвакуация пострадавших из отравленной атмосферы; 2) борьба с гипоксией, обеспечение покоя, эвакуация отравленного только на носилках и в лежачем положении, строгий постельный режим, укутывание, согревание, теплое питье, полноценная легко перевариваемая пища, усиленная кислородная терапия и по показаниям - карбоген; 3) борьба с токсическим отеком легких - кровопускание (200-500 мл), введение гипертонических растворов, антигистаминных, противовоспалительных и других лекарственных препаратов; 4) борьба с коллапсом - назначение сердечно-сосудистых средств (камфора, кофеин, в обычных дозах), карбоген и 5) предупреждение осложнений (назначение сульфаниламидов, антибиотиков и других препаратов).

    Первая мед помощь в очаге химического заражения включает надевание противогаза. При наличии раздражений слизистой оболочки глаз и носоглотки - вдыхание содержимого ампул с противодымной смесью. В случае рефлекторной остановки дыхания - искусственное дыхание (при развивающемся отеке легких оно категорически противопоказано!). Следует возможно быстрее удалить пострадавшего из очага химического заражения и доставить его в медпункт.



    Понравилась статья? Поделиться с друзьями: