Приборы дозиметрического контроля: виды, общие характеристики, принцип работы. Производственная санитария и гигиена труда О назначении аппаратуры

Как уже говорилось, основой таких поражающих факторов, как проникающая радиация и радиоактивное заражение местности являются ионизирующие излучения различной природы ( - ,  - и - излучения и нейтроны), которые не обнаруживаются органами чувств людей, а их негативное проявление маскируется скрытым периодом действия.

Вследствие этих особенностей возникает необходимость в проведении определенных мероприятий для выявления и своевременной оценки их воздействия на людей с целью принятия необходимых мер защиты.

Одним из таких мероприятий, входящих в радиационную защиту населения, является радиационный и дозиметрический контроль (РиДК).

Радиационный и дозиметрический контроль предназначен для решения следующих задач:

    Установление факта и степени радиоактивного заражения (загрязнения) любых элементов и объектов окружающей среды (местности, воздуха, воды, одежды, продовольствия, техники, зданий, сооружений и т.п.)

    Выявления зон радиоактивного заражения (загрязнения) местности и видов ИИ.

    Определение качества дезактивации зараженных объектов.

    Определение доз облучения, получаемых людьми при нахождении в зонах радиоактивного заражения (загрязнения).

Первые три задачи входят в радиационный контроль военное время - в радиационную разведку). Четвертая задача является одной из задач контроля облучения (дозиметрического контроля ).

Радиационный контроль проводится приборными средствами: индикаторами, рентгенометрами и радиометрами.

Контроль облучения (дозиметрический контроль) подразделяется на индивидуальный и групповой , причем индивидуальный контроль облучения проводится приборными средствами, а групповой контроль может вестись как приборными средствами, так и расчетным методом .

Для индивидуального дозиметрического контроля применяются индивидуальные дозиметры, а для группового приборного контроля – дозиметрические сигнализаторы и дозиметры.

Индивидуальный контроль проводится для получения конкретных данных о дозах облучения каждого человека, работающего в зонах радиоактивного загрязнения.

Групповой контроль служит для получения данных о средних дозах облучения, получаемых персоналом и формированиями при работе в зонах радиоактивного заражения и населением при нахождении на загрязненных территориях.

Групповой контроль расчетным методом вводится для части населения, не охваченной контролем с помощью технических средств. Он заключается в определении дозы облучения по средним уровням радиации с учетом продолжительности облучения и защищенности людей.

Учет доз облучения при любом виде дозиметрического контроля ведется уполномоченными органами (чаще всего медицинскими) и обязательно отражается в соответствующих журналах и карточках учета.

      1. Приборы радиационного и дозиметрического контроля.

        1. Методы обнаружения и измерения ионизирующих излучений.

Принцип обнаружения ионизирующих излучений основан на их способности ионизировать вещество среды, т.е. изменять его физические и химические свойства, которые могут быть обнаружены и измерены. Такими свойствами являются: засвечивание фотоматериалов, изменение окраски некоторых химических растворов, люминесценция некоторых веществ, изменение электропроводности газов. Перечисленные изменения в веществах составляют основу методов обнаружения и измерения ИИ.

Фотографический метод основан на сравнении степени почернения фотоэмульсии под воздействием ИИ с эталоном. На этом принципе основаны индивидуальные фотодозиметры.

Химический метод заключается в том, что под действием ИИ в химическом растворе происходят реакции окисления или разложения и образовавшиеся вещества вступают в реакцию с индикаторным веществом, меняющим цвет раствора. По интенсивности окраски судят о поглощенной дозе. Этот метод используется в химических дозиметрах.

Сцинтилляционный метод основан на свойствах некоторых веществ под действием ИИ либо светиться (радиолюминисценция), либо накапливать энергию, которая под действием УФ- или ИК-излучения вызывает видимое свечение (радиофотолюминисценция и радиотермолюминисценция соответственно). Свойство радиолюминисценции используется в измерителях мощности дозы, а два других свойства – в индивидуальных дозиметрах.

Ионизационный метод использует свойство ионизированного газа под действием сил электрического поля проводить ионизационный ток, который позволяет судить об интенсивности ионизирующих излучений.

Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство (см. Рис.1.). В простейшем случае этот прибор состоит из двух электродов, пространство между которыми заполнено газом. К электродам приложена разность потенциалов, создающая между ними электрическое поле. Положительные и отрицательные ионы, образовавшиеся под действием ИИ, движутся к электродам, что и вызывает протекание ионизационного тока в цепи.

Ионизационный ток пропорционален интенсивности излучения, но сложным образом: зависит от напряжения, приложенного к электродам. Эта зависимость называется вольт-амперной характеристикой прибора и показана на рис.2..

На характеристике выделяются три области. Первая область характеризуется тем, что с ростом напряжения растет ионизационный ток, т.к. все большее число ионов достигает электродов и не рекомбинирует. Это область рекомбинации.

В области II все образовавшиеся ионы достигают электродов. Поэтому при увеличении напряжения от V 1 до V 2 ток в цепи не изменяется. Это область насыщения, в ней работают ионизационные камеры , измеряющие поглощенные или экспозиционные дозы ИИ.

Увеличение напряжения на электродах выше V 2 приводит к возрастанию ионизационного тока. Это происходит потому, что в сильных электрических полях энергия ионов, приобретаемая ими на длине свободного пробега, становится столь большой, что они сами уже способны производить ионизацию при столкновении с нейтральными молекулами. В результате количество пар ионов, достигающих электродов, будет превышать то количество, которое образовалось под воздействием ИИ. Эта область напряжений называется областью ударной ионизации. Приборы, которые работают в этой области, называются газоразрядными счетчиками. Они используются для измерения мощности дозы ИИ малой интенсивности, т.к. обладают чувствительностью в 10 4 раз выше, чем в ионизационной камере.

Дозиметрический контроль – это система мероприятий, организуемых для контроля радиоактивного облучения населения и определения степени радиоактивного загрязнения техники, производственного оборудования, продовольствия, воды и т.д.

Дозиметрический контроль включает контроль облучения и контроль радиоактивного загрязнения.

Контроль облучения проводится с целью своевременного получения данных о поглощенных дозах населения при проведении спасательных работ. По данным контроля устанавливается факт внешнего воздействия ионизирующих излучений, оценивается работоспособность людей и определяются их радиационные поражения с целью определения необходимости лечения в медицинских учреждениях. Контроль облучения в свою очередь подразделяется на групповой и индивидуальный.

Индивидуальный контроль проводится с целью получения данных о дозах облучения каждого человека (с помощью индивидуального дозиметра ИД-11), определения степени внутреннего радиоактивного загрязнения. Каждому выдается индивидуальный дозиметр.

Групповой контроль проводится с целью получения данных о средних дозах облучения групп населения, находящихся в одинаковых условиях и определения их категорий трудоспособности. 1-2 дозиметра выдаются на группу в 14-20 чел. В зависимости от полученной дозы и продолжительности облучения устанавливаются следующие категории трудоспособности: трудоспособность полная, трудоспособность сохранена, трудоспособность ограничена, трудоспособность существенно ограничена.

Учет полученных доз ведется в индивидуальной карточке учета доз облучения и в журнале контроля облучения (дозы записываются нарастающим итогом).

Контроль радиоактивного загрязнения проводится для определения степени радиоактивного загрязнения людей (кожных покровов и одежды), техники, транспорта, оборудования и других материальных средств. Этот контроль проводится, как правило, при выходе людей из загрязненных районов, при проведении полной специальной обработки.

Лекция № 5

Основные источники облучения человека

5.1. Понятие о радиационном фоне

Все живые существа, населяющие нашу планету, постоянно подвергаются воздействию ионизирующей радиации путем внешнего и внутреннего облучения от естественных (космическое излучение и природные радиоактивные вещества) и искусственных (отходы атомной промышленности, радиоактивные изотопы, используемые в биологии, медицине, сельском хозяйстве и др.) источников ионизирующих излучений. Т.е. развитие жизни на Земле происходило и происходит в присутствии радиационного фона.

Под радиационным фоном принято понимать ионизирующие излучения от природных (естественных) источников космического и земного происхождения, а также от искусственных радионуклидов, рассеянных в биосфере в результате деятельности человека. Радиационный фон обусловлен факторами окружающей среды и не включает облучение лиц, которые работают с источниками ионизирующего излучения, а также излучение, применяемое с диагностическими и лечебными целями.

Различают естественный радиационный фон, искусственный радиационный фон, технологически измененный (повышенный) радиационный фон. Все источники радиационного фона делятся на две основные группы: естественные и искусственные.

Естественный радиационный фон (ЕРФ) является основным компонентом радиационного фона. Источниками ЕРФ являются ионизирующие излучения, которые действуют на человека на поверхности Земли от внешних естественных источников неземного происхождения (космических излучений), внешних естественных источников земного происхождения (присутствующих в земной коре, воде, воздухе), а также от внутренних источников (т.е. радионуклидов естественного происхождения, которые содержатся в организме человека). Большинство естественных источников такое, что избежать облучения от них совсем невозможно. От естественных источников радиации мы получаем 78% облучения.

Человек подвергается облучению двумя способами:

    Внешнее облучение – облучение от источников радиоактивного излучения, находящегося вне организма. Оно может производиться всеми видами излучения, но практическое значение имеют лишь гамма- и рентгеновское излучение, быстрые и медленные нейтроны, бета- излучение. Альфа- излучение ввиду ничтожной проникающей способности практического значения не имеют.

    Внутреннее облучение – облучение организма, происходящее от источника радиоактивного облучения (радиоактивного вещества), находящегося внутри организма. Оно продолжается непрерывно до тех пор, пока находящееся в организме радиоактивное вещество не распадется или же не будет выведено из организма. Внутреннее облучение в значительной степени зависит от распределения радиоактивного вещества в организме, от характера излучения (L - , β - , γ - излучателя), энергии излучения, периода полураспада и периода полувыведения.

Естественный радиационный фон является неотъемлемым фактором внешней среды и играет значительную роль в жизнедеятельности человека. Естественные радиоактивные элементы вошли в состав Земли с самого ее образования. Эволюционное развитие показывает, что в условиях естественного радиационного фона обеспечиваются оптимальные условия для жизнедеятельности растений, животных и человека. Способность радиоактивного излучения вызывать мутации послужила, наверное, одной из главных причин эволюции биологических видов в сторону повышения их организации.

Естественный радиационный фон на поверхности Земли не является строго постоянной величиной. Его изменения связаны как с глобальными, так и с локальными аномалиями. Они обусловлены циклическими колебаниями космического фона и аналогичных процессов, которые приобрели характер глобальных катастроф.

Локальные аномалии наблюдаются в отдельных районах Индии, Бразилии, Ирана, Египта, а также на территории США, Франции, стран СНГ (в том числе на Украине). Они являются следствием геологических процессов, когда в результате интенсивной вулканической деятельности и горообразования тяжелые естественные радионуклиды, прежде всего уран и торий, а также продукты их распада переместились из недр на поверхность Земли. Поэтому одни из жителей Земли получают более значительные дозы, чем другие, в зависимости от того, где они живут. Там, где залегают радиоактивные породы, уровень радиации (радиационный фон) значительно выше средних величин, в других местах может быть соответственно ниже средних величин. В Белоруссии средняя эквивалентная доза облучения от естественных источников составляет 2,4 мЗв/год. В некоторых районах Бразилии эта доза достигает 10мЗв в год, а в штате Кералла (Индия) даже до 28 мЗв/год.

Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов (асбест), использование природного газа для приготовления пищи, герметизация помещений – все это увеличивает облучение за счет естественных источников.

ДОЗИМЕТРИЧЕСКИЙ КОНТРОЛЬ (греч, dosis доза, порция + metreo мерить, измерять) -- система мероприятий, обеспечивающая измерение, оценку и регистрацию дозы ионизирующего излучения (ИИ), получаемого человеком, а также уровней загрязнения радиоактивными веществами воздуха, воды, почвы, продуктов питания.

Цель Д. к.- обеспечение радиационной безопасности персонала и населения.

Библиография: Дозиметрические и радиометрические методики, под ред. Н. Г. Гусева и др., М., 1966; НадировЮ. С. и д р. Защита подразделений от оружия массового поражения, М., 1968, библиогр.; Нормы радиационной безопасности (НРБ-7 6), М., 1977; Основные требования к дозиметрическому контролю персонала (сер. изд. по безопасности № 14), Вена, МАГАТЭ, 1966; О ш e р о в С. А. и Заостровцeв И. Т. Учебное пособие по медицинской службе гражданской обороны, М., 1973; Руководство по дозиметрическому контролю окружающей среды при нормальных рабочих условиях (сер. изд. по безопасности № 16), Вена, МАГАТЭ, 1967; Тимофеев Б. Н. и H e с ы-т о в Ю. К. Прогнозирование радиоактивного заражения, М., 1969, библиогр.

А. Н. Марей; Р. Г. Имангулов (воен.).

Дозиметрический контроль включает контроль облучения личного состава служб ЧС, радиоактивного и химического загрязнения людей, техники, материальных средств, продовольствия, воды и объектов внешней среды.

Задачи дозиметрического контроля определяются особенностями и масштабами практической деятельности и, в первую очередь, направлены на достижение следующих целей:

· подтверждения соответствия требованиям санитарного законодательства радиационно-гигиенических условий и выявление радиационной опасности;

· расчет текущих и прогнозируемых уровней облучения населения, а также техники, материальных средств, продовольствия, воды и объектов внешней среды

· обеспечение исходной информации для расчета доз и принятия решений в случае аварийного облучения, подтверждения качества и эффективности радиационной защиты людей

Данные дозиметрического контроля могут быть использованы также для:

· совершенствования применяемых и разработки новых технологии,

· предоставление населению информации, которая позволяет им понять как, где и когда они были облучены, что в свою очередь, поможет им в дальнейшем избегать дополнительного облучения,

· сопровождения обязательного медицинского обследования населения;

· эпидемиологического наблюдения за облученными контингентами

Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета - и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др.

Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный.

Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при её проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.

Сцинтилляционный метод . Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов - фотоэлектронных умножителей.

Химический метод . Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов HO 2 и ОН, образующихся в воде при её облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М.

В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений.

Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа: электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационном. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.

Газоразрядный счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разряженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

БАКТЕРИОЛОГИЧЕСКОГО КОНТРОЛЯ

ОРГАНИЗАЦИЯ ДОЗИМЕТРИЧЕСКОГО, ХИМИЧЕСКОГО И

Под радиационной обстановкой понимают масштабы и степень радиоактивного заражения местности, оказывающие влияние на действия формирований, работу объектов экономики, в т.ч. – объектов здравоохранения. Цель оценки радиационной обстановки – определение возможного влияния ее на трудоспособность населения.

Оценить радиационную обстановку значить проанализировать различные действия формирований в условиях радиоактивного заражения и выбрать наиболее целесообразные варианты действий, исключающих радиоактивное поражение населения (рассчитать ожидаемые дозы облучения, продолжительность пребывания в зонах заражения, время входа формирований в зоны заражения и т.д.).

Радиационная обстановка может быть выявлена и оценена как по результатам прогнозирования последствий применения ядерного оружия, так и по данным радиационной разведки.

Оценка методом прогнозирования дает лишь ориентировочные данные, которые могут существенно отличаться от фактических, так как прогнозирование осуществляется после применения ядерного оружия, но до выпадения радиоактивных осадков. При прогнозировании можно с достаточной точностью установить направление и скорость движения радиоактивного облака, а следовательно и время начала выпадения осадков. Это позволяет заблаговременно организовать ряд мероприятий по защите населения.

При прогнозировании определяется 4 зоны возможного заражения: зона умеренного заражения (зона А, обозначаемая на карте синим цветом); зона сильного заражения (зона Б, обозначаемая зеленым цветом); зона опасного заражения (зона В, обозначаемая коричневым цветом) и зона чрезвычайно опасного заражения (зона Г, обозначаемая черным цветом).

При оценке радиационной обстановки методом прогнозирования не определяется точное положение радиоактивного следа на местности, а только предсказывается район, в пределах которого возможно его образование; при этом площадь заражения составляет примерно 1/3 площади указанного следа.

Фактическая радиационная обстановка складывается на территории конкретного района, населенного пункта или объекта экономики и требует принятия мер защиты населения и объектов экономики.

Выявление фактической радиационной обстановки осуществляется по данным радиационной разведки. Радиационная разведка производится в целях своевременного обеспечения начальника гражданской обороны информацией о радиоактивном заражении. Измерение мощности дозы на местности являются исходными данными для оценки радиационной обстановки. Разведка ведется непрерывно постами радиационного и химического наблюдения и специально подготовленными группами (звеньями) радиационной и химической разведки. Главной их задачей является своевременное обнаружение радиоактивного или химического заражения и оповещения об опасности населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны.



Основными приборами для обнаружения ионизирующего излучения являются измерители мощности дозы (ретнгенометры-радиометры), а дозиметрического контроля – дозиметры: ДП-5, ДП-22В, ДП-24, ИД-1, ИД-11, ДП-70, ДП-3Б.

Для оперативного принятия решений об объеме мероприятий по противорадиационной защите населения и личного состава нештатных аварийно-спасательных формирований гражданской обороны достаточно получить данные об уровне гамма-излучения (именно оно дает максимальный уровень радиации в период выпадения радиоактивных осадков, или же в любые другие определенные моменты времени после ядерного взрыва) на зараженной местности спустя определенное время после ядерного взрыва или аварии на радиационно опасном объекте.

Обнаружить местное выпадение радиоактивных осадков можно с помощью приборов для радиационной разведки (рентгенометр-радиометр ДП-5А, Б или В). Радиационная разведка проводится методом поста или методом дозора формированиями медицинской службы ГО с целями своевременно установить факт радиационного загрязнения местности и определить уровень радиации, доложить о фактах радиационного загрязнения и подать сигнал оповещения, оградить радиационно загрязненную территорию, установить безопасные маршруты передвижения и пути объезда, а также для осуществления контроля за изменением уровня радиации на местности.

При разведке методом поста радиационное наблюдение производят путем периодического (через 20-30 мин.) включения рентгенометра-радиометра ДП-5А (Б,В).

Дозиметрический контроль организуется с целью предотвращения облучения населения в поражающих дозах, оценки трудоспособности населения, подвергшегося радиационному облучению, определения дозы облучения пораженных для установления степени тяжести лучевой болезни, определение степени загрязнения радиоактивными веществами продуктов и воды.

Организация контроля заключается в следующем:

– обеспечение личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения дозиметрами (ИД-1, ИД-11 и т.д.);

– снятие показаний в лечебных учреждениях осуществляется фельдшером (медсестрой) при проведении медицинской сортировки до осмотра врачом;

– дозы облучения фиксируются в историях болезни и заверяются подписью врача;

– регистрация доз облучения производится при выписке из лечебного учреждения в «карточках доз облучения»;

– предоставление сведений о дозах облучения личного состава нештатных аварийно-спасательных формирований гражданской обороны и населения в вышестоящий штаб ГО.

Средние значения коэффициентов ослабления мощности дозы ионизирующего излучения укрытиями и транспортными средствами

Значение приведенного коэффициента ослабления гамма-излучения жилыми домами приведены для сельской местности. В городах этот показатель выше на 20-40%.



Понравилась статья? Поделиться с друзьями: