В чем заключаются дозиметрический контроль. Приборы дозиметрического контроля: виды, общие характеристики, принцип работы. О видах излучения

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ

Контрольная работа

По теме: «Физико-химические свойства и методы контроля качества товаров»

Введение

Заключение

Список литературы

Введение

В условиях перехода к рыночной экономике повышение конкурентоспособности товаров является важнейшей маркетинговой задачей предприятий, так как в этой комплексной категории сочетаются и фокусируются основные производственные, коммерческие, социально-экономические и финансовые результаты деятельности, качество коллективного труда.

Под конкурентоспособностью понимается комплексная многоаспектная характеристика товара, определяющая его предпочтение на рынке по сравнению с аналогичными изделиями-конкурентами как по степени соответствия конкретной общественной потребности, так и по затратам на ее удовлетворение, что обеспечивает возможность реализации этого товара в определенный момент времени на конкретном рынке.

Конкурентоспособность товаров представляет собой сложную категорию, состоящую из ряда элементов, важнейшим из которых является их качество, которое представлено совокупностью свойств и характеристик продукции (или услуги), обеспечивающей удовлетворение установленных или предполагаемых потребностей.

От того, насколько успешно решается проблема качества, зависит многое в экономической и социальной жизни страны. Объективный фактор, объясняющий многие глубинные причины наших экономических и социальных трудностей, снижающихся темпов экономического развития за последние десятилетия, с одной стороны, и причины повышения эффективности производства и уровня жизни в развитых странах Запада, с другой это качество создаваемой и выпускаемой продукции.

Улучшение качества продукции - важнейшее направление интенсивного развития экономики, источник экономического роста, эффективности общественного производства. В этих условиях возрастает значение комплексного управления качеством продукции и эффективностью производства.

Системы управления качеством, действующие на различных предприятиях, индивидуальны. Тем не менее, мировая наука и практика сформировали общие признаки этих систем, а также методы и принципы, которые могут применяться в каждой из них.

Управление качеством - действия, осуществляемые при создании, эксплуатации или потреблении продукции в целях установления, обеспечения и поддержания необходимого уровня ее качества. Управление качеством продукции основывается на стандартизации, которая представляет собой нормативно-техническую основу, определяющую прогрессивные требования к продукции, изготовленной для нужд национального хозяйства, населения, экспорта.

В своей курсовой работе я рассмотрю сущность и значение качества продукции, показатели качества, факторы, влияющие на качество продукции, системы управление качеством продукции и услуг.

1. Что такое качество продукции, ее показатели качества, уровни качества, факторы, влияющие на качество продукции

Проблема качества продукции носит в современном мире универсальный характер.

От того, насколько успешно она решается, зависит многое в экономической и социальной жизни страны. Объективный фактор, объясняющий многие глубинные причины наших экономических и социальных трудностей, снижающихся темпов экономического развития за последние десятилетия, с одной стороны, и причины повышения эффективности производства и уровня жизни в развитых странах Запада, с другой это качество создаваемой и выпускаемой продукции.

Качество товара, его эксплуатационная безопасность и надежность, дизайн, уровень послепродажного обслуживания являются для современного покупателя основными критериями при совершении покупки, и следовательно, определяют успех или неуспех фирмы на рынке.

Современная рыночная экономика предъявляет принципиально новые требования к качеству выпускаемой продукции. Это связано с тем, что сейчас выживаемость любой фирмы, ее устойчивое положение на рынке товаров и услуг определяются уровнем конкурентоспособности.

В свою очередь, конкурентоспособность связана с действием нескольких десятков факторов, среди которых можно выделить два основных - уровень цены и качество продукции. При этом качество продукции постепенно выходит на первое место. Производительность труда, экономия всех видов ресурсов уступают место качеству продукции.

Новейший подход к стратегии предпринимательства заключается в понимании того, что качество является самым эффективным средством удовлетворения требований потребителей и одновременно с этим - снижения издержек производства.

Качество - синтетический показатель, отражающий совокупное проявление многих факторов - от динамики и уровня развития национальной экономики до умения организовать и управлять процессом формирования качества в рамках любой хозяйственной единице. Вместе с тем мировой опыт показывает, что именно в условиях открытой рыночной экономики, немыслимой без острой конкуренции, проявляются факторы, которые делают качество условием выживания товаропроизводителей, определяющим результатом их хозяйственной деятельности.

Качество - это совокупность свойств и характеристик продукции, которые придают ей способность удовлетворять обусловленные или предполагаемые потребности. Являясь продуктом труда, качество товара - категория, неразрывно связанная как со стоимостью, так и с потребительской стоимостью.

Потребительная стоимость характеризует способность вещи удовлетворять определенную потребность. Одна и та же потребительная стоимость может в различной степени удовлетворять потребность. Поэтому качество характеризует меру потребительной стоимости, степень ее пригодности и полезности.

Следовательно, потребительная стоимость составляет основу качества, а последнее отражает уровень потребительной стоимости, т.е. количественное удовлетворение общественной потребности в продукции.

Показатели качества и методы их оценки

Для управления качеством продукции и его повышением необходимо оценить уровень качества. Область деятельности, связанная с количественной оценкой качества продукции, называется квалиметрией. Оценка уровня и качества продукции является основой для выработки необходимых управляющих воздействий в системе управления качеством продукции. Для оценки уровня качества продукции используют показатели качества.

Целью оценки является определение того, какие показатели качества следует выбирать для рассмотрения, какими методами, и с какой точностью определяют их значения, какие средства для этого потребуются, как обработать и в какой форме следует представить результаты оценки.

При определении целесообразности повышения качества продукции важное значение имеет учет показателей качества. От повышения качества по его отдельным показателям зависит объем затрат предприятия, поэтому необходимо учитывать финансовые и производственные возможности предприятия при планировании повышения качества. Одни и те же показатели могут иметь разную степень значимости для предприятия в зависимости от выпускаемой продукции.

Показатель качества продукции численно характеризует степень проявления определенного свойства, входящего в состав качества.

Качество продукции - совокупность свойств, которые количественно выражаются в показателях качества. Общепризнанной является классификация на десять показателей.

1. Показатели назначения - характеризуют полезный эффект от использования продукции по назначению и обусловливают область применения готовой продукции.

2. Показатели надежности - безотказность, сохраняемость, ремонтопригодность и долговечность изделия. В зависимости от особенностей оцениваемой продукции для характеристики надежности могут использоваться как все 4, так и часть из названных показателей.

3. Показатели технологичности характеризуют эффективность конструкторско-технологических решений для обеспечения высокой производительности труда при изготовлении и ремонте продукции. Именно с помощью технологичности достигаются массовость выпуска продукции, рациональное распределение затрат материалов, средств, трудовых ресурсов и времени при технологической подготовке производства, изготовлении и эксплуатации продукции.

4. Показатели стандартизации и унификации - это насыщенность продукции стандартными, унифицированными и оригинальными составными частями. Чем меньше оригинальных изделий, тем лучше как для изготовителя, так и для потребителя.

5. Эргономические показатели - отражают взаимодействие человека с изделием и комплексом гигиенических, антропометрических, физиологических свойств человека, проявляющихся при пользовании изделием.

6. Эстетические показатели - характеризуют информационную выразительность, рациональность формы, целостность композиции, совершенство исполнения и стабильность товарного вида изделия.

7. Показатели транспортабельности - выражают приспособленность продукции к транспортировке.

8. Патентно-правовые показатели - характеризуют патентную чистоту продукции и являются существенным фактором при определении конкурентоспособности.

9. Экологические показатели могут вообще отсутствовать в продукции, когда производство данной продукции не может быть экологически опасным - в принципе, например, при телевизоров, компакт-дисков. Это уровень вредных воздействий на окружающую среду, которые возникают при эксплуатации или потреблении продукции.

10. Показатели безопасности - характеризуют особенности для безопасности покупателя и обслуживающего персонала, то есть обеспечивают безопасность при монтаже, обслуживании, ремонте, хранении, транспортировке, потреблении продукции.

Совокупность перечисленных показателей формирует качество продукции. Однако помимо всех этих показателей важна и цена изделия. Именно с ней связан вопрос экономически оптимального качества. Покупатель, приобретая изделие, всегда сопоставляет, компенсирует ли цена набор свойств, которыми оно обладает. Если при улучшении качества цена буде слишком высокой, то тогда эффективности повышения качества не будет.

Факторы, влияющие на качество продукции

На каждом предприятии на качество продукции влияют разнообразные факторы, как внутренние, так и внешние.

К внутренним относятся такие, которые связаны со способностью предприятия выпускать продукцию надлежащего качества, т.е. зависят от деятельности самого предприятия. Они многочисленны, их классифицируют на следующие группы: технические, организационные, экономические, социально - психологические.

Технические факторы самым существенным образом влияют на качество продукции, поэтому внедрение новой технологии, применение новых материалов, более качественного сырья - материальная основа для выпуска конкурентоспособной продукции.

Организационные факторы связаны с совершенствованием организации производства и труда, повышением производственной дисциплины и ответственности за качество продукции, обеспечением культуры производства и соответствующего уровня квалификации персонала.

Экономические факторы обусловлены затратами на выпуск и реализацию продукции, политикой ценообразования и системой экономического стимулирования персонала за производство высококачественной продукции.

Социально - экономические факторы в значительной мере влияют на создание здоровых условий работы, преданности и гордости за марку своего предприятия, моральное стимулирование работников - все это важные составляющие для выпуска конкурентоспособной продукции.

Внешние факторы в условиях рыночных отношений способствуют формированию качества продукции. Внешняя или окружающая среда является неотъемлемым условием существования любого предприятия и является по отношению к нему неконтролируемым фактором. Все воздействие внешней среды можно разделить на следующие отдельные факторы: экономические, политические, рыночные, технологические, конкурентные, международные и социальные.

Анализ внешней среды дает возможности организации для прогнозирования ее возможностей, для составления плана на случай непредвиденных обстоятельств, для разработки системы раннего предупреждения на случай возможных угроз и для разработки стратегий, которые могли бы превратить внешние угрозы в любые выгодные возможности. Анализ внешней среды необходим в процессе стратегического планирования.

Среди рассмотренных факторов внешней среды конкурентные факторы занимают особое место. Ни одна организация не может себе позволить игнорировать фактические или возможные реакции своих конкурентов.

В условиях рыночных отношений изменяются цели предприятия, которые объединяют в себе следующие вопросы: обеспечение выживаемости, максимизация загрузки, максимизация текущей прибыли, завоевание лидерства на сегменте рынка, завоевание лидерства по показателям качества товара, достижение конкретного объема сбыта, рост продаж, завоевание расположения клиента.

конкурентоспособность качество потребность

2. Какие показатели характеризуют оптические свойства потребительских товаров

В экспертизе продовольственных товаров используются многие оптические методы, основанные на изменениях энергетического состояния атомов веществ. Оптические методы анализа используют энергетические переходы внешних валентных электронов. Общим для них является необходимость предварительной атомизации разложение на части/ вещества.

Большой класс оптических методов основан на использовании различных явлений и эффектов, возникающих при взаимодействии электромагнитного излучения с веществом. В связи с этим необходимо рассмотреть сущность электромагнитного излучения.

Электромагнитное излучение /ЭМИ/, свет имеет двойственную природу - волновую и корпускулярную. Для описания ЭМИ используют волновые и квантовые характеристики /параметры/.

Волновые параметры. Электромагнитную волну можно представить в виде двух переменных полей, перпендикулярных друг другу и к направлению движения волны.

Рис. 1 Электромагнитная волна

Н - магнитная составляющая, Е - электрическая составляющая

Частота (н) - число колебаний в единицу времени. В СИ единица частоты Гц. 1Гц = 1 колебанию в секунду. Высокие частоты измеряют в КГц. 1КГЦ =103Гц. 1МГц =106Гц. Зеленый свет например характеризуется частотой 6*10Гц.

Длина волны (л) - расстояние между двумя соседними максимумами волны. Она равна отношению скорости к частоте. В СИ измеряется в метрах и его долях -- сантиметрах (см), миллиметрах (мм), микрометрах (мкм), нанометрах (нм), ангстремах (Е), 1 мкм = 10-6м. 1 нм = 10-9м. lЕ = 10-10м. Зеленый свет представляет собой электромагнитные колебания с длиной волны = 500-550 нм = 5*10-7-5,5*10-7м.

Совокупность всех частот (длин волн) ЭМИ называют электромагнитным спектром.

В зависимости от длины волны в электромагнитном спектре выделяют следующие участки (области):

Рентгеновская 10-12 - 10-8м или до 10 нм

Дальняя УФ 10-8 - 10-7м 10 - 200 нм

Ближняя УФ 2*10-7 - 4*10-7м 200 - 400 нм

Видимая 4*10-7 - 7,6*10-7м 400 - 760 нм

Ближняя ИК 7,6*10-7м - 2,5*10-6м 760 - 2500 нм

Средняя ИК 2,5*10-6 - 5,0*10-5м 2500 - 5000 нм

Дальняя ИК 5,0*10-5 - 1,0*10-3м 5000 - 1000000 нм

Микроволновая 1,0*10-3 - 1,0м

Радиоволновая 1,0 - 103м

Волновое число (а) - число волн, приходящееся на единицу расстояния. В качестве единицы волнового числа наиболее часто используют обратный сантиметр (см-1). Для зеленого света = 1/5*10 = 2,0*101см.

Скорость распространения ЭМИ в определенной среде (с), в вакууме она максимальна (с = 2,99792*108 м/с - 300000 км/с = 3,0* 1010 см/с). В любой другой среде с1 = c/з1 где з1- коэффициент преломления среды.

Длина волны и частота колебаний связаны между собой соотношением:

v = с/л = с*а.

н = 3,0*108/5,0*10-7 = 0,6*1015 гц = 6,0*1014 гц

н = 3,0*1010*2,0*10-4 = 6,0*1014гц

Интенсивность (I) - на практике за интенсивность принимают значение аналитического сигнала в произвольных единицах, например число делений шкалы прибора. По определению, интенсивность - это мощность ЭМИ, испускаемого источником в определенном направлении, на единицу телесного угла, она пропорциональна квадрату амплитуды.

Плоскость поляризации - плоскость ХУ, в которой колеблется электромагнитное поле. Электромагнитный поток, состоящий из множества плоскостей поляризации, называют неполяризованным, а поток, в котором поля электрическое или магнитное лежат в одной плоскости - плоскополяризованным.

Классификация оптических методов анализа

Методы анализа, основанные на изменениях энергетического состояния атомов веществ входят в группу оптических (атомно-спектроскопических методов), различающихся по способу получения и регистрации аналитического сигнала.

Оптические методы анализа (ОМА) используют энергетические переходы внешних электронов (валентных). Общим для них является необходимость предварительной атомизации (разложение на атомы) вещества.

Атомно-эмиссионная спектроскопия основана на испускании излучения атомами, возбужденными кинетической энергией плазмы, дугового или искрового разряда и т.п.

Атомно-флуоресцентная спектроскопия использует испускание излучения атомами, возбужденными электромагнитным излучением от внешнего источника.

Атомно-абсорбционная спектроскопия основана на поглощении атомами излучения от внешнего источника.

Рентгеновские методы основаны на энергетических переходах внутренних электронов атомов. В зависимости от способа получения и регистрации сигнала различают рентгеноэмиссионную, рентгеноабсорбционную, рентгенофлуоресцентную спектроскопию и их разновидности (электронная спектроскопия, электронно-зондовый анализ и др.). Используют их в основном для исследования строения вещества. Рентгеновские методы не требуют атомизации вещества и позволяют исследовать твердые пробы без их предварительной подготовки.

Ядерные методы основаны на возбуждении ядер атомов. По происхождению аналитического сигнала различают следующие молекулярно-спектроскопические методы: абсорбционная молекулярная спектроскопия основана на энергетических переходах валентных электронов, сигналы от которых проявляются в видимой и УФ-областях. Абсорбционная молекулярная спектроскопия в ИК-области основана на колебательных переходах, сигналы от которых проявляются в области от 800нм до 10 или в приемлемых единицах от 2,5мкм до 40мкм.

Люминесцентная спектрометрия базируется на испускании излучения после возбуждения молекул светом.

Магнитная резонансная спектрометрия основана на получении сигналов от молекул, помещенных в магнитное поле.

Фотоакустическая спектрометрия основана на измерении теплоты, выделяемой при безизлучательных переходах.

Рентгеновская спектроскопия основана на возбуждении внутренних электронов молекулы.

3. Как проводится дозиметрический контроль потребительских товаров

Дозиметрический контроль проводится с целью своевременного получения данных о дозах облучения личного состава ПСФ при действиях в зонах радиоактивного загрязнения. По полученным данным определяется режим работы ПСФ. Дозиметрический контроль подразделяется на групповой и индивидуальный.

Групповой контроль проводится с целью получения данных о средних дозах облучения для оценки и определения категории работоспособности личного состава ПСФ. Для этого формирование обеспечивается измерителями дозы излучения ИД-1 (дозиметрами ДКП-50-А из комплектов ДП-24, ДП-22В) из расчета 1-2 дозиметра на группу численностью 14-20 человек, действующих в одинаковых условиях радиационной обстановки.

Индивидуальный контроль проводится с целью получения данных о дозах каждого спасателя, которые необходимы для первичной диагностики степени тяжести радиационного поражения. Личному составу ПСФ в этих целях выдаются индивидуальные измерители мощности дозы ИД-11.

Характеристики приборов радиационной разведки и дозиметрического контроля

Наименование

Характеристики и диапазон измерений

Назначение

Полевой радиометр-рентгенометр ДП-5А (ДП-5Б, ДП-5В)

По гамма-излучению 50 мкР/ч - 200 Р/ч

Измерение мощности дозы гамма-излучения и наличия загрязненной местности по гамма-, бета-излучению

Дозиметр ДРГ-01Т

10 мкР/ч - 10 Р/ч

Измерение мощности экспозиционной дозы (МЭД) внешнего гамма-излучения

Комплект дозиметров ДП-22В

Измерение доз излучения

Комплект дозиметров ДП-24 (аналог ДП-22В)

Измерение доз излучения

Комплект измерителя дозы ИД-1

Измерение поглощенных доз гамма-нейтронного излучения

Индивидуальный измеритель дозы ИД-11 с измерительным устройством ИУ

10-1500 рад 50-800 Р

Индивидуальный контроль облучения с целью первичной диагностики радиационного поражения

Химические дозиметры ДП-70

(ДП-70М) выдаются дополнительно к ДКП-50-А

Измерение доз излучения для медицинской диагностики степени поражения

Комплект дозиметров ДК-0,2

Измерение мощности дозы гамма-излучения в лабораторных условиях

Определение радиоактивных частиц в потребительских товарах производят с помощью радиометра-дозиметра ДБГ-07Б «Эксперт».

Открытие радиоактивности относится к 1896 г., когда А.Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиактивным (от лат. Radio - излучаю и actiwas - действенный).

Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного излучения.

Радиоактивность. Ядра атомов состоят из нуклонов, протонов и нейтронов. Число протонов в ядре равно атомному номеру Z данного элемента в периодической системе Д.И.Менделеева. Общее число протонов и нейтронов в ядре равно массовому числу А, соответственно число нейтронов N = А -- Z.

Совокупность атомов, ядра которых имеют одинаковые А и Z, называют изотопами.

Многие химические элементы имеют несколько изотопов, например, у водорода их три: 11Н, 21Н, 31H.

Первые два изотопа протий и дейтерий - стабильные, а третий - тритий - радиоактивный (нестабильный).

Изотопы, ядра которых пертерпевают самопроизвольные превращения, называют радиоактивными. Обычно эти превращения обладают двумя особенностями:

Для всех типов радиоактивных превращений справедлив один кинетический закон;

Количество типов радиоактивных превращений ограниченно. Различают следующие типы ядерных, т.е. радиоактивных превращений:

превращения, изомерный переход, нейтронный распад, протонный распад, спонтанное деление,

излучение,

излучение сопровождает многие из перечисленных типов превращений, а при изомерном переходе является единственным видом излучения.

Таблица 1

Обозначение

Проникающая способность

Ионизирующая способность

Электрон

Позитрон

Альфа-частица

Очень высокая

Отсутствует

т.е. квант

Очень высокая

Очень низкая

* - относительно нейтрона,

**- 1,60240* 10Кл.

для большого количества ядер число актов распада в единицу времени (скорость распада) пропорционально исходному количеству ядер N:

Выражение (12.1) представляет собой дифференциальную форму закона радиоактивного распада, где N - число радиоактивных атомов в момент времени t; л - константа, называемая постоянной распада или радиоактивной постоянной, с-1. Интегральная форма закона радиоактивного распада получается интегрированием уравнения (12.1) в пределах от t0 = 0 до tt:

Где Nt - число радиоактивных ядер в момент времени t=0;

N0 - количество радиоактивных ядер в момент времени t.

Закон радиоактивного распада носит статистический характер: чем больше распадающихся ядер, тем точнее он выполняется. Скорость радиоактивного распада - (dN/dt) называют абсолютной активностью - (а) образца:

at = - dN/dt = лN

Абсолютная активность выражается числом актов распада в секунду и подчиняется закону радиоактивного распада:

Наряду с л - радиоактивной постоянной, устойчивость радиоактивного изотопа можно охарактеризовать периодом полураспада. T1/2 - это промежуток времени, в течение которого происходит распад половины имеющихся в наличии радиоактивных ядер элемента. Абсолютная активность,а"за время Т1/2 уменьшается вдвое:

аТ1/2 / а0 = Ѕ = е -лТ1/2

л*Т1/2 = 1n2 = 0,693

Каждый радионуклид (химический элемент, подверженный радиоактивному распаду) имеет неизменный, присущий только ему, период полураспада, который может составлять от нескольких секунд до миллионов лет. Например, 238U распадается наполовину за 4470 млн лет, а 1381 - всего лишь за 8 сут.

Величины и единицы измерения радиоактивности

ПОГЛОЩЕННАЯ ДОЗА - единица измерения - 1Гр (грей). 1Гр=100рад.

ЭКВИВАЛЕНТНАЯ ДОЗА - это величина поглощенной дозы (в греях или радах), умноженная на переводной «коэффициент качества», отражающий эффективность воздействия конкретного вида радиации. Единица измерения -1 Зв (зиверт) в системе СИ; 1 бэр - внесистемная единица (биологический эквивалент рентгена), 100 бэр = 1 Зв.

МОЩНОСТЬ ЭКВИВАЛЕНТНОЙ ДОЗЫ - это приращение эквивалентной дозы за малый промежуток времени, деленное на этот промежуток времени. Единица измерения - 1 Эв/час - (в системе СИ), 1 бэр/час - (внесистемная единица). 1 Эв/час = 100 бэр/час.

ФЛЮЕНС - число частиц, проникающих в сферу малого сечения, деленное на это сечение. Единица измерения - 1см.

ПЛОТНОСТЬ ПОТОКА ЧАСТИЦ - флюенс частиц за малый промежуток времени, деленный на этот промежуток времени. Единица измерения - част/см*мин.

АКТИВНОСТЬ - это число распадов в секунду в радиоактивном образце. Единица измерения - 1Бк (беккерель). Внесистемная единица измерения - Кu (кюри).

УДЕЛЬНАЯ АКТИВНОСТЬ - это число распадов в секунду в радиоактивном образце на единицу массы образца. Единица измерения - 1 Бк/кг.

Равные дозы различных видов излучения не обязательно должны вызывать одинаковые биологические эффекты. Например, поглощенная доза нейтронного излучения 0,5Гр будет приводить к более тяжелым последствиям, чем такая же доза рентгеновского излучения. Обычно при одинаковой величине поглощенной дозы рентгеновские лучи, г- и электронное излучение вызывают наименьшие повреждения по сравнению с излучением тяжелых ионов. Нейтронное излучение занимает промежуточное положение.

б-распад характерен для атомов тяжелых элементов, б-частица представляет собой ядро атома гелия 42Не, поэтому при испускании б-частицы образуется ядро с зарядом Z на 2 единицы меньше и массой А на 4 единицы меньше, чем у исходного радиоактивного изотопа:

23892U = 23490Th + 42He (б-частица),

б-частицы радиоактивных элементов имеют большую энергию, достигающую 9 МэВ. Часто спектр б-частиц состоит из нескольких групп (зон), каждая из которых включает б-частицы определенной энергии. Наличие б-частиц различных энергий при распаде одного и того же изотопа указывает на то, что б-распад сопровождается г-излучением. б-частицы, образующиеся при распаде, вступают во взаимодействие с веществом среды. Это взаимодействие сопровождается рассеиванием энергии б-частиц и превращением их атомы гелия. При этом энергия расходуется главным образом на взаимодействие с электронами атомов и молекул среды, что приводит к их ионизации и возбуждению. Так, например, б-частица, имеющая энергию 3,4 МэВ, может образовать 105 пар ионов, на образование 1 пары ионов необходимо около 34 эВ. Проникающая способностью б-частиц мала. Они поглощаются листом писчей бумаги, тканью одежды. Средние пробеги в воздухе не превышают 10 см.

Заключение

Под управление качеством продукции понимают постоянный, планомерный, целеустремленный процесс воздействия на всех уровнях на факторы и условия, обеспечивающий создание продукции оптимального качества и полноценное ее использование.

Управление качеством - органическая часть общего управления производством и одна из его ветвей дерева целей.

Основными задачами управления качества являются: изучение рынка сбыта; изучение национальных и международных требований к выпускаемой продукции; разработка методов и средств воздействия на процессы исследования, проектирования и производства; сбор, анализ, хранение информации о качестве продукции.

При управлении качеством продукции непосредственными объектами управления, как правило, являются процессы, от которых зависит качество продукции.

Система управления качеством продукции представляет собой совокупность управленческих органов и объектов управления, мероприятий, методов и средств, направленных на установление, обеспечение и поддержание высокого уровня качества продукции.

Современное управление качеством на предприятии, независимо от формы собственности и масштаба производственной деятельности, должно оптимально сочетать действия, методы и средства, обеспечивающие, с одной стороны, изготовление продукции, удовлетворяющей текущие запросы и потребности рынка, а с другой - разработку новой продукции, способной удовлетворять будущие потребности и будущие запросы рынка.

Не менее важным элементом в управлении качеством является сертификация и стандартизация. Главная задача стандартизации состоит в создании системы нормативно-технической документации. Эта система определяет прогрессивные требования к продукции, а также контроль за правильностью использования этой документации. Сертификация продукции является одним из способов подтверждения соответствия продукции заданным требованиям. Правовые основы стандартизации и сертификации продукции регламентируется законодательными и нормативными актами.

Литература

1. Васильев В.П. Аналитическая химия. Учебник для хим-техн. Спец.вузов.-М.Высшая школа, 1989.

2. Вытовтов А.А. Физико-химические свойства и методы контроля качества потребительских товаров. Ч.1: Учебное пособие //СПбТЭИ, СПб, 1997.

3. Вытовтов А.А. и др. Физико-химические свойства и методы контроля качества потребительских товаров. Ч.2: Учебное пособие // СПбТЭИ, СПб,1998.

4. Ворохова Е.Н., Прохоров Г.В. Аналитическая химия. Физико-химические методы анализа: Учебник- М. Высшая школа, 1991.

5. Коленко Я.А. Технология лабораторного эксперимента: Справочник СПб. Политехника, 1994.

6. Кириллов Е.А. Цветоведение. М. Ленпромбытиздат.1987.

7. Луизов А.В. Цвет и свет. Л. Энергопромиздат. 1989.

8. Матц С.А. Структура и консистенция пищевых продуктов. М. Легкая промышленность. 1982.

9. Современные методы исследования качества пищевых продуктов. А.Снегирева, А.Н.Жванко и др. М. «Экономика», 1976.

10. Справочное руководство по древесине. Пер. с англ., М. «Лесная промышленность ». 1982.

11. Анализ и оценка качества консервов по микробиологическим показателям (Мазохина-Поршнякова Н.И. и др.). М., Пищевая промышленность. 1977.

12. Аненко М.И. Дубовик А.С. Прикладная статистика. 2-е изд., переработ. - М. «Наука», 1982.

13. Айвазян С.А. Прикладная статистика:

14. Айвазян С.А. Прикладная статистика: исследование зависимостей. М. «Финансы и статистика», 1985.

15. Дмитриев А.С. и др. Прикладная статистика. Статистические и термодинамические свойства твердых тел. - М. «Мир», 1981.

16. Джонсон Л., Лион Ф. Статистика и планирование эксперимента в технике и наук: методы планирования эксперимента. М. «Мир», 1981.

17. Завертанная Л.С., Дефекты и тепловые свойства твердых тел. Харьков, 1984.

18. Кряйзмер Л.П. Кибернетика: Учебн. - М. Агропромиздат, 1985.

19. Легко В.К., Мазурин О.В. Свойства карцевого стекла. Л. «Наука», 1985.

20. Методы разделения и концентрирования в аналитической химии / Л.Н.Москвин, Г.Л.Цпарина. - Л. «Химия», 1991.

Размещено на Allbest.ru

...

Подобные документы

    Понятие качества и конкурентоспособности продукции. Факторы и показатели обеспечения качества товара, методы определения значений показателей. Методы оценки конкурентоспособности. Маркетинговая карта рынка мясоперерабатывающих (колбасных) компаний.

    курсовая работа , добавлен 15.12.2013

    Показатели качества и система качества. Влияние качества на уровень показателей деятельности предприятия, себестоимость, цену продукции, прибыль, рентабельность, конкурентоспособность продукции. Методы осуществления оценки технического уровня продукции.

    контрольная работа , добавлен 05.10.2010

    Понятие, методы и последовательность оценки качества продукции. Качество товаров как совокупность характерных свойств, формы, внешнего вида и условий применения. Уровень качества товара: оценка на основе количественного измерения определяющих ее свойств.

    реферат , добавлен 13.05.2009

    Методологические принципы квалиметрии, ее существенные отличия от метрологии. Формирование иерархической структуры качества продукции. Единичные, комплексные, интегральные и базовые показатели качества, их характеристики. Методы оценки уровня качества.

    реферат , добавлен 09.12.2009

    Сущность понятия "качество", экономическое и социальное значение его роста. Его анализ с точки зрения различных категорий. Показатели и факторы повышения уровня качества продукции. Объективные, эвристические и статистические методы его определения.

    курсовая работа , добавлен 17.05.2016

    Сущность качества продукции и ее планирование на предприятии, оценка важности и необходимости данного процесса. Показатели качества продукции как основная категория оценки потребительских ценностей. Методы обеспечения качества продукции на предприятии.

    курсовая работа , добавлен 08.01.2011

    Методы оценки, показатели качества телекоммуникационных услуг в традиционных сетях. Качество обслуживания в сетях, построенных на базе IP-ориентированных протоколов. Концепция качества услуг с точки зрения управления сетью передачи данных оператора связи.

    контрольная работа , добавлен 28.10.2014

    Понятие качества продукции как экономической категории, совокупности потребительских свойств и характеристик, придающих ей способность удовлетворять потребности. Направления и основные этапы оценки качества на рынке, используемые методики и критерии.

    отчет по практике , добавлен 13.07.2014

    Особенности управления качеством в процессе производства. Нормативная документация, сырье, состав и физико-химические свойства пива "Аливария золотое". Контролируемые показатели качества, их классификация. Разработка модели оценки уровня качества пива.

    курсовая работа , добавлен 08.01.2016

    Различные подходы к понятию качества, его влияние на потребительскую стоимость продукции. Классификация типов рынка по степени развития конкуренции. Задачи оценки уровня качества продукции, его улучшение с целью повышения конкурентоспособности товара.

ДОЗИМЕТРИЧЕСКИЙ КОНТРОЛЬ (греч, dosis доза, порция + metreo мерить, измерять) -- система мероприятий, обеспечивающая измерение, оценку и регистрацию дозы ионизирующего излучения (ИИ), получаемого человеком, а также уровней загрязнения радиоактивными веществами воздуха, воды, почвы, продуктов питания.

Цель Д. к.- обеспечение радиационной безопасности персонала и населения.

Библиография: Дозиметрические и радиометрические методики, под ред. Н. Г. Гусева и др., М., 1966; НадировЮ. С. и д р. Защита подразделений от оружия массового поражения, М., 1968, библиогр.; Нормы радиационной безопасности (НРБ-7 6), М., 1977; Основные требования к дозиметрическому контролю персонала (сер. изд. по безопасности № 14), Вена, МАГАТЭ, 1966; О ш e р о в С. А. и Заостровцeв И. Т. Учебное пособие по медицинской службе гражданской обороны, М., 1973; Руководство по дозиметрическому контролю окружающей среды при нормальных рабочих условиях (сер. изд. по безопасности № 16), Вена, МАГАТЭ, 1967; Тимофеев Б. Н. и H e с ы-т о в Ю. К. Прогнозирование радиоактивного заражения, М., 1969, библиогр.

А. Н. Марей; Р. Г. Имангулов (воен.).

Измерения

Производственный контроль при работе с техногенными источниками излучения осуществляется за всеми основными радиационными показателями, определяющими уровни облучения персонала и населения. В соответствии с НРБ-99 в каждой организации система радиационного контроля должна предусматривать конкретный перечень видов контроля, типов радиометрической и дозиметрической аппаратуры, точек измерения и периодичности контроля.

Контроль за радиационной обстановкой в зависимости от характера проводимых работ включает:

Измерение мощности дозы рентгеновского, гамма- и нейтронного излучений, плотности потоков частиц ионизирующего излучения на рабочих местах, в смежных помещениях, на территории организации, в санитарно-защитной зоне и зоне наблюдения;

Измерение уровней загрязнения радиоактивными веществами рабочих поверхностей, оборудования, транспортных средств, средств индивидуальной защиты, кожных покровов и одежды персонала;

Определение объемной активности газов и аэрозолей в воздухе рабочих помещений;

Измерение или оценку активности выбросов и сбросов радиоактивных веществ;

Определение уровней радиоактивного загрязнения объектов окружающей среды в санитарно-защитной зоне и зоне наблюдения.

Выделяют три основных вида дозиметрического контроля внешнего профессионального облучения:

Текущий контроль;

Оперативный контроль;

Аварийный контроль.

Задача текущего контроля заключается в определении индивидуальной дозы профессионального облучения работника в нормальных условиях эксплуатации источников ионизирующих излучений.

Задача оперативного контроля заключается в определении индивидуальной дозы профессионального облучения работника при выполнении запланированных работ, связанных с возможным повышенным внешним облучением. К ним относятся операции по ремонту и техническому обслуживанию оборудования, когда повышенное облучение не планируется, а также работы в условиях планируемого повышенного облучения, включая работы по ликвидации последствий радиационных аварий.



Задача аварийного контроля заключается в определении больших доз облучения работника в случае выхода источника из-под контроля.

Приборы для дозиметрического контроля как внешнего, так и внутреннего облучения делятся на приборы группового контроля и индивидуального контроля.

Групповой дозиметрический контроль(ГДК) – это контроль облучения персонала, заключающийся в определении индивидуальных доз облучения работников на основании результатов измерений характеристик радиационной обстановки в рабочем помещении (на рабочих местах) с учетом времени пребывания там персонала.

Индивидуальный дозиметрический контроль(ИДК) – это контроль облучения персонала, заключающийся в определении индивидуальных доз облучения работника на основании результатов индивидуальных измерений характеристик облучения тела или отдельных органов каждого работника.

Индивидуальная доза облучения должна регистрироваться в журнале с последующим внесением в индивидуальную карточку, а также в машинный носитель для создания базы данных в организациях. Копия индивидуальной карточки работника в случае его перехода в другую организацию, где проводится работа с источниками излучения, должна передаваться на новое место работы; оригинал должен храниться на прежнем месте работы. Результаты индивидуального контроля доз облучения персонала должны храниться в течение 50 лет. При проведении индивидуального контроля необходимо вести учет годовых эффективной и эквивалентных доз, эффективной дозы за 5 последовательных лет, а также суммарной накопленной дозы за весь период профессиональной работы.

Для ГДК используются стационарные и переносные, так называемые инспекционные, дозиметрические приборы. Для ИДК применяются индивидуальные дозиметры.

По виду и назначению дозиметры могут быть условно разделены на следующие группы:

1) дозиметры – приборы, измеряющие экспозиционную или поглощенную дозу ионизирующих излучений;

2) радиометры – приборы, измеряющие плотность потоков ионизирующих излучений (интенсивность внешних потоков бета-частиц, нейтронов и др.);

3) спектрометры – приборы, измеряющие энергию частиц ионизирующих излучений.

В комбинированных приборах могут объединяться функции указанных средств измерений.

Для обнаружения изменения радиационной обстановки по параметрам активности радона и торона и дочерних продуктов их распада применяют радиометры РРА-01М-01, РРА-01М-03, РРА-10, ПОУ-4; по рентгеновскому излучению, гамма-излучению и бета-излучению и измерению эквивалентной дозы применяют дозиметры-радиометры ДРГ-01 «ЭКО» МКГ-01 (подробные сведения приведены в приложении 1).

Поверхностную загрязненность можно установить путем измерения активности мазков, снимаемых с контролируемых поверхностей, или непосредственным измерением с помощью радиометров для определения удельной поверхности активности.

Чаще всего для этой цели используют переносные приборы для контроля поверхностей пола, стен и оборудования, а также устанавливаемые у выходов из помещений стационарные приборы для контроля загрязненности кожных покровов, обуви и одежды персонала.

Метод индивидуальной дозиметрии выбирают в зависимости от вида ионизирующего излучения, особенностей приборов, нужных диапазонов измерений, точности показаний, объема работ.

Дозиметры размещают на участках тела, которые подвергаются наибольшему облучению. Длительность ношения прибора выбирают такой, чтобы показания, по крайней мере, в 2-3 раза превосходили нижний порог показаний прибора (но не больше длительности установленного промежутка регистрации измерений).

Контрольные вопросы к разделу 10:

1. Какие виды ионизирующего излучения существуют, как они характеризуются?

2. Какие излучения обладают наибольшей проникающей способностью?

3. Что является источником ионизирующего излучения?

4. Где и с какой целью применяются ионизирующие излучения?

5. Что такое – активностьрадиоактивного вещества, в каких единицах измеряется?

6. Что такое – активность минимально значимая удельная?

7. Что такое – поглощенная доза, в каких единицах измеряется?

8. Что такое – экспозиционная доза, в каких единицах измеряется?

9. Что такое – эквивалентная доза, в каких единицах измеряется?

10. Что такое – взвешивающие коэффициенты для отдельных видов излучения?

11. Что такое – эффективная доза излучения, в каких единицах измеряется?

12. Что такое – предел дозы ионизирующего облучения?

13. Что такое – предел годового поступления ионизирующего облучения?

14. Какие классы работ с источниками ионизирующего излучения существуют и чем они характеризуются?

15. Каковы могут быть последствия при воздействии на человека ионизирующего излучения?

16. Чем оценивается опасность хронического облучения?

17. Какое излучение наиболее опасно при внешнем облучении человека?

18. Какое излучение наиболее опасно при внутреннем облучении человека?

19. Как зависят нормируемые пределы доз (ПД) ионизирующего облучения от категории облучаемых лиц?

21. В чем заключаются дополнительные ограничения для женщин в возрасте до 45 лет, работающих с источниками излучения?

22. В каких случаях нормы радиационной безопасности допускают облучение персонала выше установленных пределов доз?

23. Какой уровень обучения эффективной дозой в течение года рассматривается для персонала группы А как потенциально опасный?

24. Требуется ли лицензирование деятельности организаций, связанной с использованием источников излучения?

25. В течение какого срока действительно санитарно-эпидемиологическое заключение о соответствии санитарным правилам условий работы с источниками физических факторов воздействия на человека?

26. Кто в организации обеспечивает условия сохранности источников излучения?

27. Какие мероприятия необходимо провести в эксплуатирующей организации к моменту получения источника излучения?

28. С какого возраста допускают людей к работе с источниками излучения в качестве персонала группы А?

29. Какие существуют средства защиты работников от ионизирующего облучения?

30. Какие существуют методы защиты работников от ионизирующего облучения?

31. На какие группы по назначению подразделяются защитные экраны?

32. Какие материалы используют для устройства защитных экранов?

33. Можно ли системы вентиляции для помещений, где ведутся работы с радиоактивными веществами, объединять с системами вентиляции помещений, не связанных с применением этих веществ?

34. Какими санитарно-техническими устройствами должны быть оборудованы помещения, в которых ведутся работы с открытыми источниками излучения?

35. В чем заключаются требования к СИЗ для работ с радиоактивными веществами?

36. Какие условия необходимо выполнять при сборе и временном хранении радиоактивных отходов в организациях?

37. Какие требования к местам захоронения радиоактивных отходов следует выполнять?

38. Что включает в себя контроль за радиационной обстановкой в организации?

39. Какие виды дозиметрического контроля внешнего профессионального облучения существуют?

40. В чем заключается групповой дозиметрический контроль?

41. Какие приборы используют для измерения ионизирующего излучения?

42. Как производят захоронение радиоактивных отходов в зависимости от их активности?

43. Как можно охарактеризовать субъективные ощущения при воздействии на организм в производственных условиях ионизирующего излучения?

II Дозиметри́ческий контро́ль

комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т.п., а также уровней загрязнения окружающей среды радиоактивными веществами; в условиях ядерной войны предусматривается осуществление Д. к. личного состава войск и формирований гражданской обороны, различных групп населения и окружающей среды.

Дозиметри́ческий контро́ль группово́й - Д. к. группы людей, находящихся в одинаковых условиях облучения.

Дозиметри́ческий контро́ль индивидуа́льный - Д. к., обеспечивающий измерение и оценку внешнего облучения человека, степени его внутреннего радиоактивного загрязнения, а также загрязнения его кожных покровов и одежды.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Дозиметрический контроль" в других словарях:

    дозиметрический контроль - дозиметрический контроль: Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений; Источник … Словарь-справочник терминов нормативно-технической документации

    Комплекс организационных и технических мероприятий по определению доз облучения людей, проводимых с целью количественной оценки эффекта воздействия на них ионизирующих излучений. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

    Дозиметрический контроль - комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений … Российская энциклопедия по охране труда

    дозиметрический контроль - Комплекс организационных и технических мероприятий по определению доз облучения людей с целью количественной оценки эффекта воздействия на них ионизирующих излучений. [ГОСТ Р 22.0.05 94] Тематики техногенные чрезвычайные ситуации Обобщающие… … Справочник технического переводчика

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis fizika atitikmenys: angl. health monitoring; radioactive survey vok. Kernstrahlungskontrolle, f; Strahlenschutzüberwachung, f rus. дозиметрический контроль, m; радиационный контроль, m pranc. contrôle de… … Fizikos terminų žodynas

    дозиметрический контроль - rus радиационнная дозиметрия (ж), дозиметрический контроль (м) eng radiation monitoring fra détection (f) des rayonnements deu Strahlennachweis (m), Strahlenüberwachung (f) spa control (m) de la irradiación … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Esamos jonizuojančiosios spinduliuotės aptikimas ir matavimas dozimetriniais prietaisais. Taip pat vadinama radiologine kontrole. atitikmenys: angl. radiological… …

    дозиметрический контроль - dozimetrinė kontrolė statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Veiksmai ir priemonės technikos, maisto produktų, vandens ir kt. objektų radioaktyviajam užterštumui nustatyti ir žmonių radioaktyviąjai apšvitai kontroliuoti.… … Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

    Дозиметрический контроль - мероприятие по защите войск от поражения радиоактивными веществами; подразделяется на контроль радиоактивного облучения и контроль радиоактивного заражения. Контроль радиоактивного облучения состоит из измерения доз облучения, получаемых… … Краткий словарь оперативно-тактических и общевоенных терминов

    Комплекс мероприятий, обеспечивающих систематическое измерение, регистрацию и оценку доз ионизирующих излучений, получаемых персоналом предприятий атомной промышленности, атомных электростанций и т. п., а также уровней загрязнения окружающей… … Большой медицинский словарь

§ 56. Для дозиметрического контроля профессионального внутреннего облучения используют:

Групповой дозиметрический контроль облучения (ГДК);

Индивидуальный дозиметрический контроль облучения (ИДК).

§ 57. Групповой дозиметрический контроль заключается в определении значения ОЭД персонала по результатам систематических измерений объемной активности в воздухе рабочих помещений (на рабочих местах) с учетом времени пребывания персонала в этом помещении (на рабочем месте). Значения ОЭД, которые могут быть получены с помощью ГДК, характеризуются значительной неопределенностью. Проведение ГДК является одним из элементов контроля радиационной обстановки на рабочих местах (в рабочих помещениях). Результаты ГДК используются:

Для планирования дозиметрического контроля внутреннего облучения персонала;

Для оценки индивидуальных доз облучения персонала.

§ 58. Значение ОЭД, полученное с помощью ГДК, может быть приписано индивиду в качестве значения индивидуальной ОЭД только в условиях нормальной эксплуатации ИИИ и если по имеющимся данным значение годовой дозы облучения на его рабочем месте не является или по прогнозу не может являться значимым, то есть не превышает уровень введения индивидуального дозиметрического контроля У ВК , установленный в Регламенте ДК предприятия.

§ 59. Индивидуальный дозиметрический контроль заключается в определении значения ОЭД внутреннего облучения персонала по результатам систематических индивидуальных измерений физических величин, характеризующих внутреннее облучение работника, с помощью инструментальных методов.

§ 60. Согласно § 53 и § 55 индивидуальные измерения физических величин, характеризующих внутреннее облучение работника, заключаются в определении активности радионуклидов:

Во всем теле человека либо о его отдельных органах;

В выделениях человека или других пробах биологического происхождения.

§ 61. Индивидуальный дозиметрический контроль используется:

Для определения доз облучения персонала группы А в условиях нормальной эксплуатации источника излучения, если по имеющимся данным значение годовой дозы облучения на рабочем месте является или по прогнозу может являться значимым, то есть превышает УВК;

Для определения доз облучения всех лиц, работающих с источниками облучения в условиях планируемого повышенного (потенциально опасного) облучения.

Рис. 1 . Организационная схема дозиметрического контроля персонала группы А .



§ 62. Содержание дозиметрического контроля профессионального внутреннего облучения заключается в проведении систематических измерений физических величин, характеризующих внутреннее облучение работника, и переходе от результатов измерений характеристик радиационной обстановки к индивидуальным значениям нормируемых величин, определенных с приемлемой неопределенностью. В дозиметрическом контроле вводятся два этапа (см. Рис. 1 и раздел 10 МУ 2.6.1.16-2000):

Этап группового дозиметрического контроля (ГДК), где применяется элементарная модель определения индивидуальной ОЭД;

Этап индивидуального дозиметрического контроля (ИДК), где применяются стандартная и специальная модели определения индивидуальной ОЭД.

§ 63. Расчет индивидуальной дозы при ГДК проводится согласно требованиям раздела 6.1. Элементарная модель определения индивидуальных доз заключается в расчете индивидуальных доз облучения для стандартных условий облучения по результатам контроля радиационной обстановки на рабочих местах. При расчетах используются значения величины объемной активности радионуклидов в воздухе на рабочем месте, Q U,G (см. раздел 5.1).

§ 64. Расчет индивидуальной дозы при ИДК проводится согласно разделу 6.2 на основании определения величины ингаляционного поступления. При ИДК используются стандартная и специальная модели определения индивидуальных доз:

1) Стандартная модель заключается в использовании стандартных условий облучения, определяемых в п. 8 НРБ-99 и МУ 2.6.1.16-2000, при интерпретации результатов систематических измерений физических величин согласно § 60. Использование стандартной модели является достаточным на первом этапе индивидуального контроля, который охватывает максимальное количество людей и ограничивается условием не превышения индивидуальной дозы соответствующего контрольного уровня (уровня действия - согласно п. 10.1 МУ 2.6.1.16-2000);



2) Специальная модель заключается в интерпретации результатов систематических измерений физических величин согласно § 60 и расчете индивидуальных доз облучения для реальных условий облучения (т. е. для реальных значений физико-химических характеристик аэрозолей при ингаляции). Специальная модель применяется на втором этапе индивидуального дозиметрического контроля с целью уточнения величины индивидуальной дозы для ограниченного числа людей.

§ 65. Непосредственно для целей планирования и организации ДК внутреннего облучения персонала в контролируемых условиях эксплуатации источника излучения устанавливается ряд дозовых уровней (см. Рис. 1):

Уровень введения индивидуального дозиметрического контроля (У ВК ) - такое значение годовой эффективной дозы или эквивалентной дозы облучения органа, при действительном или предполагаемом превышении которого определение соответствующих доз следует проводить с помощью индивидуального дозиметрического контроля облучения работника;

Уровень исследования (У И ) - такое значение дозы, полученной в течение периода контроля, при превышении которого следует провести исследование причин повышения дозы и при необходимости провести мероприятия по улучшению радиационной обстановки на рабочем месте;

Уровень действия (У Д ) - такое значение дозы, при действительном или предполагаемом превышении которого следует уточнить значение индивидуальной дозы с помощью специальной модели определения дозы и при необходимости провести мероприятия по улучшению радиационной обстановки на рабочем месте.

§ 66. В случае обнаружения систематического превышения значения У Д следует планировать проведение медицинского обследования в стационаре.

§ 67. Значения У ВК согласно МУ 2.6.1.16-2000 устанавливаются предприятием в диапазоне 1 - 5 мЗв и согласовываются с органами Госсанэпиднадзора при разработке Регламента ДК внутреннего облучения.

§ 68. Значения У И и У Д устанавливаются предприятием в зависимости от характера выполняемых работ и согласовываются с органами Госсанэпиднадзора. Указанные уровни должны приводиться в Регламентах ДК внутреннего облучения персонала.

§ 69. В нормальных условиях обращения с источником согласно требованиям раздела 6 МУ 2.6.1.16-2000:

Нецелесообразно устанавливать значения У ВК ниже 1 мЗв;

Решение об установлении значения У ВК выше 1 мЗв, но ниже 5 мЗв принимается по принципам обоснования и оптимизации с учетом конкретной обстановки;

Значения У ВК не следует устанавливать выше 5 мЗв.

Принятие решения о значении У ВК для организации дозиметрического контроля персонала предприятия должно учитывать следующие основные факторы:

Ожидаемый уровень облучения;

Наиболее вероятные изменения дозы облучения;

Сложность методов измерения и интерпретации, составляющих программу контроля.

§ 70. Перечень радионуклидов, поступление которых необходимо определять для целей планирования и проведения ДК профессионального облучения, определяется по результатам радиационного контроля радионуклидного состава аэрозолей на рабочих местах. При осуществлении измерений следует определять радионуклиды, годовые ОЭД которых превышают 20 % для гамма-излучателей и 50 % для альфа-излучателей значения уровня регистрации, установленного согласно § 8.3 МУ 2.6.1.16-2000. и для объемных активностей которых выполняется неравенство:

(6)

где: - среднегодовая объемная активность радионуклида U в рабочем помещении (на рабочем месте), Бк/м 3 ; ДОА U - минимальное из значений допустимой среднегодовой объемной активности радионуклида U , приведенных в Приложении П-1 к НРБ-99 для разных типов G его соединений. Определение среднегодовой объемной активности проводится на основании результатов контроля радиационной обстановки согласно отдельным МУ.



Понравилась статья? Поделиться с друзьями: