Радиационно-опасный объект (РОО) К радиационно-опасным объектам относятся: атомные станции различного назначения; предприятия по регенерации отработанного. Конспект урока "радиоактивность и радиационно опасные объекты" Что относится радиационным опасным о

Радиационно-опасный объект (РОО) – это объект, на котом хранят, перерабатывают, используют или транспортируют радиоактивные вещества и при аварии, на котором может произойти облучение ионизирующим излучением или радиоактивное заражение людей, сельскохозяйственных животных и растений, а также загрязнение окружающей природной среды.
К радиационно-опасным объектам относятся атомные электростанции и реакторы, предприятия радиохимической промышленности, объекты по переработке и захоронению радиоактивных отходов и т.д.
В 2 странах мира на АЭС насчитывается 430 энергоблоков. Они вырабатывают электроэнергии: во Франции – 75%, в Швеции – 51%, в Японии – 40%, в США – 24%, в России – 12%. У нас работает 9 АЭС, имеющих 29 блоков.
При авариях или катастрофах на объектах атомной энергетики образуется очаг радиоактивного заражения (территория, на которой произошло радиоактивное заражение окружающей среды, повлекшее поражение людей, животных, растительного мира на длительное время).
Очаг поражения делится на зоны (табл.1).

Опасность, возникающая во время аварий на РОО, связана с выходом радиоактивных веществ в окружающую среду.
Радиоактивное загрязнение (заражение) местности происходит в двух случаях: при взрывах ядерных боеприпасов или при аварии на объектах ядерной энергетики.

При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада, поэтому происходит быстрый спад уровней радиации. Особенностью аварий на АЭС является: во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий, стронций), а во-вторых, цезий и стронций обладают длительным периодом полураспада. Поэтому резкого спада уровней радиации нет. При ядерном взрыве главную опасность представляет внешнее облучение (90-95% от общей дозы). При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Доза внешнего облучения составляет 15%, а внутреннего – 85%.

При определении допустимых доз облучения учитывают, что оно может быть одно- или многократным. Однократным считают облучение, полученное за первые четверо суток. Последствия однократного радиационного облучения приведены в таблице 2. Облучение может быть импульсивным (при воздействии проникающей радиации) или равномерным (при облучении на радиоактивно-загрязненной местности). Облучение, полученное за время, превышающее четверо суток, считают многократным.

Действие электромагнитного излучения на организм человека, в основном, определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обуславливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении практически невозможен. Тем не менее, можно делать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового – кожей и подкожной клетчаткой, дециметрового – внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования, как отдельных органов, так и организма в целом.

Люди, находящиеся под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т.д.).

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.
Защита человека от опасного воздействия электромагнитного излучения осуществляется рядом способов, основными их которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства защиты.

Химически опасный объект – объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества, при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

Крупнейшими потребителями аварийно химически опасных веществ (АХОВ) являются: черная и цветная металлургия; целлюлозно-бумажная промышленность; машиностроительная и оборонная промышленности; коммунальное хозяйство; медицинская промышленность; сельское хозяйство.

Тысячи тонн АХОВ ежедневно перевозят различными видами транспорта, перекачивают по трубопроводам. Все названные объекты экономики химически опасны. К сожалению, аварии на них случаются часто, а их масштабы сравнимы со стихийными бедствиями.

Химическая авария – авария на химически опасном объекте, сопровождающаяся разливом или выбросом АХОВ, способным привести к гибели или заражению людей, продовольствия, пищевого сырья и кормов, сельскохозяйственных животных и растений или окружающей природной среды.

Вредные вещества могут проникать в организм человека через органы дыхания, желудочно-кишечный тракт, а также кожные покровы и слизистые оболочки.

По степени воздействия на организм человека все вредные вещества подразделяются на четыре класса:

  • вещества чрезвычайно опасные (ртуть, свинец, озон, фосген);
  • вещества высокоопасные (оксиды азота, бензол, йод, марганец, медь, сероводород, едкие щелочи, хлор);
  • вещества умеренно опасные (ацетон, ксилол, сернистый ангидрид, метиловый спирт);
  • вещества малоопасные (аммиак, бензин, скипидар, этиловый спирт, оксид углерода).
  • Следует иметь в виду, что и малоопасные вещества при длительном воздействии могут при больших концентрациях вызвать тяжелые отравления.

Набольшую опасность по наличию и количеству АХОВ а, следовательно, по возможности заражения ими атмосферы и местности представляют районы страны, краткая характеристика которых приведена в таблице 3.

В результате аварий возможны заражение окружающей среды и массовые поражения людей, животных и растений. В связи с этим для защиты персонала и населения при авариях рекомендуется:

  • использовать индивидуальные средства защиты и убежища с режимом полной изоляции;
  • эвакуировать людей из зоны заражения, возникшей при аварии;
  • применять антидоты и средства обработки кожных покровов;
  • соблюдать режимы поведения (защиты) на зараженной территории;
  • проводить санитарную обработку людей, дегазацию одежды, территории сооружений, транспорта, техники и имущества.
  • Биологически опасные объекты – это предприятия фармацевтической, медицинской и микробиологической промышленности с наличием так называемого биологического фактора, основными компонентами которого являются микроорганизмы, продукты метаболической деятельности микроорганизмов и микробиологического синтеза.
  • Значительную опасность для населения представляют биологические аварии, сопровождающиеся выбросом (вывозом, выпуском) в окружающую среду препаратов с патогенными биологическими агентами (бактерии, вирусы, риккетсии, грибы, токсины и яды).

Биологическая авария – это авария, сопровождающаяся распространением опасных биологических веществ в количествах, создающих угрозу жизни и здоровью людей, животных и растений, наносящих ущерб окружающей природной среде.
Характерным для биологических аварий является: длительное время развития, наличие скрытого периода в проявлении поражений, стойкий характер и отсутствие четких границ возникших очагов поражения, трудность обнаружении и идентификации возбудителя (токсина). Для ликвидации последствий биологических аварий необходимо принятие экстренных мер с привлечением учреждений и формирований госсанэпидслужбы Минздрава России, МЧС России, Минобороны России, МВД России и других ведомств, а также создаваемых на их базе специализированных формирований, являющихся составной частью Всероссийской службы медицины катастроф.

Общее руководство, организацию и контроль за проведением мероприятий по локализации и ликвидации очага биологического заражения осуществляют санитарно-противоэпидемические комиссии при органах исполнительной власти субъектов Российской Федерации.

В целях выявления и оценки санитарно-эпидемиологической и биологической обстановки в зоне биологической аварии организуется санитарно-эпидемиологическая и биологическая разведка. Санитарно-эпидемиологическая разведка проводится в целях выявления условий, влияющих на санитарно-эпидемиологическое состояние населения, и установления путей возможного заражения населения и распространения инфекционных заболеваний.

Биологическая разведка проводится в целях своевременного обнаружения факта выброса (утечки) биологического агента, в т.ч. индикации и определения вида возбудителя. Биологическая разведка подразделяется на общую и специальную. Общая биологическая разведка ведется силами постов радиационного и химического наблюдения, Всероссийского центра мониторинга и прогнозирования чрезвычайных ситуаций, разведывательными дозорами, частями и органами управления ГОЧС путем наблюдения и неспецифической индикации биологических средств.

В целях локализации и ликвидации очага биологического заражения осуществляется комплекс режимных, изоляционно-ограничительных и медицинских мероприятий, которые могут выполняться в рамках режима карантина и обсервации.
Под карантином следует понимать систему государственных мероприятий, включающих режимные, административно-хозяйственные, противоэпидемические, санитарные и лечебно-профилактические меры, направленные на локализацию и ликвидацию очага биологического поражения.

Обсервация это комплекс изоляционно-ограничительных, противоэпидемических и лечебно-профилактических мероприятий, направленных на локализацию очага биологического заражения и ликвидации в нем инфекционных заболеваний. Основной задачей обсервации является своевременное обнаружение инфекционных заболеваний с целью принятия мер по их локализации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ. АВАРИИ С ВЫБРОСОМ РАДИОАКТИВНЫХ ВЕЩЕСТВ. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ. ДОЗА ОБЛУЧЕНИЯ. ПОСЛЕДСТВИЯ РАДИАЦИОННЫХ АВАРИЙ. СТЕПЕНИ ЛУЧЕВОЙ БОЛЕЗНИ. ЙОДНАЯ ПРОФИЛАКТИКА. ДЕЙСТВИЕ НАСЕЛЕНИЯ ПРИ АВАРИЯХ С ВЫБРОСОМ РАДИОАКТИВНЫХ ВЕЩЕСТВ

В настоящее время на многих ОЭ, военных объектах, НЦ и т.д. используются РВ. Отдельные системы, блоки и устройства этих объектов преобразуют энергию делящихся ядер в электрическую и другие виды энергии. Ряд предприятий использует РВ в технологических процессах или хранят их на своей территории. Все эти предприятия относятся к объектам с ядерными компонентами. Однако радиационно-опасными из них являются далеко не все.

Радиационно-опасный объект (РОО) - это объект, на котором хранят, перерабатывают или транспортируют РВ, при аварии или разрушении которого может произойти облучение людей, с/х животных, растений, ОЭ и окружающей природной среды.

К радиационно-опасным объектам (РОО) относятся:

Предприятия ядерного топливного цикла (ЯТЦ): урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов;

Атомные станции (АС): атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);

Объекты с ядерными энергетическими установками и (ЯЭУ): корабельными, космическими, войсковыми атомными электростанциями (ВАЭС);

Ядерные боеприпасы (ЯБ) и склады их хранения.

Предприятия ЯТЦ осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов (ЯЭР), переработку радиоактивных отходов, их хранение и окончательное размещение.

Предприятия ядерного топливного цикла (ЯТЦ) можно разделить на 3 группы:

Предприятия урановой промышленности;

Радиохимические заводы;

Места захоронения радиоактивных отходов.

К предприятиям урановой промышленности относятся объекты, осуществляющие:

Добычу урановой руды;

Обработку урановой руды, включающие предприятия по очистке урановой руды на специальных дробилках в несколько этапов и обогащению методом газовой диффузии.

Процесс приготовления ЯТ включает получение порошкообразного диоксида урана, его таблетирование, изготовление тепловыделяющих элементов (ТВЭЛов) и тепловыделяющих сборок (ТВС), которые в последующем используются в ЯЭР.

Отработанное в ядерных реакторах топливо может отправляться на захоронение, но может быть переработано с извлечением необходимых компонентов и частично повторно использовано.

Переработка отработанного топлива осуществляется на радиохимических заводах. Радиоактивные отходы радиохимических заводов направляются на захоронение, которое осуществляется в бетонных емкостях в естественных или искусственных полостях.

Наиболее характерными авариями на предприятиях ЯТЦ являются:

Возгорание горючих компонентов и радиоактивных материалов;

Превышение критической массы делящихся веществ;

Появление течей и разрывов в резервуарах-хранилищах;

Характерные аварии с готовыми изделиями.

Под аварией на РОО понимается выход из строя или повреждение отдельных узлов и механизмов объекта во время его эксплуатации, приводящей к РЗ. Выбросы и истечения РВ из реактора характеризуются следующими поражающими факторами:

Газо-аэрозольная смесь радионуклидов распространяется в виде облака на сотни км и испускает мощный поток ионизирующих излучений (ИИ);

РЗ местности, имеет длительный характер в результате разброса высокоактивных осколков ЯТ на территории АС и осаждения радиоактивных частиц из газо-аэрозольного облака.

Радиоактивное загрязнение - это присутствие РВ на поверхности, внутри материала, в воздухе, в теле человека или другом месте, в количестве, превышающем уровни, установленные нормами радиационной безопасности (НРБ-99).

При авариях на АС радиоактивное загрязнение имеет следующие особенности:

РЗ местности и атмосферы имеет сложную зависимость от исходных параметров (типа и мощности реактора, времени его работы, характера аварии и т.п.) и метеоусловий, вследствие чего прогнозирование его возможных масштабов весьма затруднено и носит ориентировочный характер;

Естественный спад активности радионуклидов существенно более длителен, чем распад продуктов ядерных взрывов;

Смесь выбрасываемых из реактора РВ обогащена долгоживущими радионуклидами (плутоний - 239, цезий - 137 и др.), причем относительный вклад в общую активность альфа-излучающих изотопов с течением времени будет увеличиваться. В результате большие площади на длительное время окажутся загрязненными биологически опасными радионуклидами, которые в последующем могут быть вовлечены в миграционные процессы местности;

Малые размеры радиоактивных частиц (средний размер около 2 мкм) способствуют их глубокому проникновению в микротрещины и краску, что затрудняет проведение работ по дезактивации;

Пылеобразование приводит к поступлению в организм через органы дыхания мелкодисперсионных продуктов деления, прежде всего, биологически опасных «горячих» частиц;

Наличие в атмосфере облака газо-аэрозольной смеси радионуклидов, испускающей мощный поток ИИ;

Осаждение высокоактивных осколков конструкций реактора и графита как на территории АС, так и в виде пятен по следу облака;

Стационарный характер источника загрязнения, продолжительность выбросов во времени на небольшую высоту (1,5-2 км) и частые изменения метеоусловий приводят к азимутальной неравномерности загрязнения местности, изменению уровней радиации в отдельных районах во времени и образованию радиоактивных зон загрязнения в виде пятен.

Радиоактивное загрязнение (РЗ) местности при аварии на АС качественно характеризуется теми же параметрами, что и РЗ при ядерном взрыве, однако имеет целый ряд особенностей существенно влияющих на состав и содержание мероприятий по защите населения и территорий. Это следующие особенности:

1. Состав радиоактивных изотопов в смеси, выбрасываемой в атмосферу из ядерного реактора, существенно различен для каждого реактора, зависит от многих его параметров, что в свою очередь, определяет различный характер уменьшения активности и интенсивности излучения со временем.

2. Значительная часть (около 30%) энергии при ядерном взрыве затрачивается на проникающую радиацию, в то время как при аварии на АС проникающая радиация как поражающий фактор практически отсутствует.

3. Выброс РВ в атмосферу при ядерном взрыве происходит практически мгновенно, а при аварии на АС - сравнительно длительный промежуток времени.

4. При аварии на АС облако РВ поднимается на высоту до 1,5 км и переносится ветром в нижних турбулентных слоях атмосферы.

5. При аварии на АС количество поднятой с грунта пыли будет незначительно.

6. При аварии на АС короткоживущие радионуклиды представляют большую опасность, чем при ЯВ.

7. Выбрасываемая при аварии на АС смесь РВ обогащена долгоживущими изотопами цезия-137, стронция-90, плутония-239 и т.д., что способствует их длительной последующей миграции.

8. при аварии на АС с разрушением активной зоны реактора на территорию непосредственно прилегающую к реактору, выбрасывается большое количество разрушенных конструкций реактора, в т.ч. кусков облученного графита, что является источником мощного ИИ.

9. При аварии на АС возможно «прожигание» основания реактора и фундамента сооружения энергоблока с последующим проникновением радиоактивных частиц в грунт и грунтовые воды.

10. При аварии на АС общее количество выброшенных РВ зависит от типа реактора, его мощности, продолжительности работы от момента последней загрузки ЯТ, а также вида аварии.

11. При ядерном взрыве определяющим в накоплении дозы излучения в организме человека является внешнее воздействие гамма-излучения от продуктов взрыва. При аварии на АС оно существенно дополняется дозой облучения от загрязненной окружающей среды и дозой внутреннего облучения.

12. При аварии на АС спад мощности дозы облучения происходит значительно медленнее, чем при ядерном взрыве.

Ядерный взрыв помимо ударной волны и светового излучения, сопровождается проникающей радиацией (мощный поток гамма-излучения и быстрых нейтронов), а также образованием большого количества радионуклидов (радиоизотопов). При ядерном взрыве образуется до 200 радиоактивных изотопов 30 химических элементов, а при аварии на РОО с выбросом радионуклидов образуется более 100 радиоизотопов 37 химических элементов, ядра атомов которых способны самопроизвольно распадаться и превращаться в ядра атомов других элементов и испускать при этом невидимые излучения.

Радиоактивное излучение, нейтронный поток и рентгеновское излучение называют ИОНИЗИРУЮЩИМИ ИЗЛУЧЕНИЯМИ.

Виды ИИ: альфа-излучение, бета-излучение, гамма-излучение и быстрые нейтроны.

Альфа-излучение - поток положительно заряженных частиц (ядер атомов гелия). Скорость движения около 20 тыс.км/сек. путь пробега несколько см (4-10), на 1 см пути образуется 20-30 тыс. пар ионов. Задерживается одеждой, листом бумаги. Эти частицы опасны при попадании вовнутрь организма.

Бета-излучение - поток отрицательно заряженных частиц (электронов) или позитронов. Скорость движения около 300 тыс.км/сек. Путь пробега до 20 м. На 1 см пути образуется до 150 пар ионов. Задерживается одеждой до 40-60%.

Гамма-излучение - ЭМИ, по свойствам оно близко к рентгеновскому, но обладает значительно большей скоростью и энергией. Скорость распространения равна 300 тыс. км/сек. Обладает большой проникающей способностью, но малой ионизацией. На 1 см пути образуется 2 пары ионов. Это основное поражающее излучение для живых организмов. Защиту обеспечивают защитные сооружения.

радиоактивный ионизирующий излучение нейтронный

Особенности биологического действия ионизирующих излучений

Высокая эффективность поглощенной энергии. Даже малые количества могут вызвать глубокие биологические изменения в организме;

Наличие скрытого периода (период мнимого благополучия);

Действие малых доз может накапливаться (кумуляция);

Воздействует не только на данный организм, но и на его потомство;

Различные органы организма имеют свою чувствительность к облучению;

Не каждый организм в целом одинаково реагирует на облучение.

Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия.

В результате воздействия ИИ на организм в тканях могут происходить сложные физические, химические и биологические процессы. Известно, что в биологической ткани 60-70% по массе составляет вода. В результате ионизации молекулы воды (Н2О) образуют свободные радикалы Н0 и ОН0, которые в присутствии кислорода О2 образуют гидратный оксид НО2 и перекись водорода Н2О2. Оба они являются сильными окислителями, вступают в химические реакции с молекулами белка и ферментов. Нарушаются обменные процессы в организме, подавляется активность ферментных систем, замедляется и прекращается рост тканей, появляются токсины. А это приводит к нарушению жизнедеятельности отдельных функций или систем в целом, т.е. заболеванию лучевой болезнью.

Поражающее действие ИИ характеризуется дозой (Д) облучения. ДОЗА - это энергия излучения, поглощенная единицей массы (объема).

Различают:

Экспозиционная доза (рентген)

Поглощенная доза (рад)

Эквивалентная доза (бэр).

В результате воздействия ИИ нарушаются нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы и индивидуальных особенностей организма вызванные изменения могут быть обратимыми и необратимыми. При небольших дозах пораженная ткань восстанавливается. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ИИ вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (РВ попадают внутрь).

Биологический эффект ИИ зависит от суммарной дозы и времени воздействия, вида излучения, размеров облучаемой поверхности. При однократном облучении всего тела возможны биологические нарушения в зависимости от суммарной дозы поглощенной.

Поглощенная доза излучения, вызывающая поражение отдельных частей тела, а затем смерть, превышает смертельную поглощенную дозу облучения всего тела.

Важным фактором при воздействии ИИ на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает.

Внешнее облучение альфа, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма и нейтронное облучение, которое проникает в ткань на большую глубину и разрушают ее.

Степень поражения организма зависит от размера облучаемой поверхности. С уменьшением облучаемой поверхности уменьшается и биологический эффект. РВ могут попасть внутрь организма при вдыхании воздуха, зараженного радиоактивными элементами, с зараженной пищей или водой и, наконец, через кожу, а также при заражении открытых ран.

Степень опасности зависит также от скорости выведения веществ из организма. На скорость выведения РВ большое влияние оказывает период полураспада данного РВ.

Полученная поглощенная доза приводит к развитию лучевой болезни, в зависимости от дозы облучения различают следующие степени лучевой болезни:

1. Первая степень (легкая) - 100-250 рад, Р

2. Вторая степень (средняя) - 250-400 рад, Р

3. Третья степень (тяжелая) - 400-600 рад, Р

4. Четвертая степень (кр. тяжелая) - более 600 рад. Р.

Дозы внешнего облучения, не приводящие к снижению работоспособности людей:

При однократном облучении (до 4 суток) - не более 50 рад., из них за первые сутки не более 30 рад.

При многократном облучении: в течение одного месяца - не более 100 рад., в течение 3-х месяцев - не более 200 рад, в течение года - не более 300 рад.

В мирное время все страны, использующие АЭ на производстве, в медицине и науке, имеют национальные нормы и правила радиационной безопасности, основанные на рекомендациях. (Международной комиссии по РЗ). С 1976 г. в нашей стране действуют Нормы радиационной безопасности, уточненные в 2000 г. Их цель - предупредить неблагоприятные последствия от воздействия ИИ, а также исключить переоблучение людей при авариях на ЯЭУ и ликвидации их последствий.

Нормами РБ регламентированы три категории облучаемых лиц.

После аварии на ЧАЭС были установлены временные допустимые уровни загрязнения после проведения дезактивационных работ:

Поверхность дорог вне насел. пункта - 1,5 мр/час;

Поверхность дорог в насел. пункте - 0,7 мр/час;

Открытые поверхности территорий насел. пунктов, земельных угодий, тротуаров, площадок, полей - 0,7 мр/час;

Наружные поверхности жилых домов и служебных помещений - 0,7 мр/час;

Внутренние поверхности - 0,3 мр/час.

По нормам МАГАТЕ при уровне радиации на местности 200 мр/час необходимо проводить эвакуацию населения и дезактивацию местности.

Для оценки загрязнения открытых поверхностей радиоактивными частицами можно использовать ориентировочно соотношение между мощностью дозы на местности (р/ч) и плотностью РЗ (КИ/м2).

Загрязнение плотностью 1 КИ/м2 эквивалентно мощности дозы 10 р/час. (10 МКИ/см2 соответствует 1р/ч).

В целях исключения массовых радиационных поражений и переоблучения сверх установленных доз действия рабочих, служащих, л/с ГО и остального населения строго регламентируются и подчиняются определенному режиму РЗ. Под ним понимается порядок действия людей, применение средств и способов защиты в зонах РЗ, предусматривающий максимальное уменьшение возможных доз облучения:

Радиационная защита (укрытие л/с в ЗС, ПРУ, подвалах, домах и т.п.)

Эвакуация населения;

Применение СИЗ органов дыхания и кожи;

Йодная профилактика.

Эвакуация, как крайняя мера. обеспечивающая защиту, проводится только в исключительных случаях.

Проведение йодной профилактики

При авариях на ЯЭУ в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131 (период полураспада 8 дней). Попадая в организм, он сорбируется щитовидной железой и поражает ее. Наиболее эффективным методом защиты при этом является прием внутрь лекарственных препаратов стабильного йода (йодная профилактика). Максимальный защитный эффект достигается при заблаговременном или одновременном с поступлением радиоактивного йода приеме стабильно аналога.

Защитный эффект препарата резко снижается в случае его приема, спустя 2 часа после поступления в организм радиоактивного йода. Однако даже через 6 часов после разового поступления йода-131 прием препарата стабильного йода может снизить дозу облучения щитовидной железы примерно в 2 раза. Однократный прием 100 мг стабильного йода обеспечивает защитный эффект в течение 24 ч. В условиях длительного поступления радиоактивного йода в организм человека необходимы повторные приемы препаратов стабильного йода 1 раз в сутки в течение всего срока, когда возможно поступление йода-131, но не более 10 суток для взрослых и не более 2 суток для беременных женщин, детей до 3 лет.

Для снижения последствий воздействия ИИ на организм применяются противорадиационные препараты (радиопротекторы). Они повышают устойчивость организма к воздействию ИИ или снижают тяжесть клинического течения лучевой болезни, ослабляют ранние симптомы поражения радиацией - тошноту и рвоту (Индивидуальная аптечка АИ-2).

Действия населения, связанные с выбросом радиоактивных веществ

1. При оповещении.

Получив сообщение об опасности РЗ, немедленно наденьте противогаз, детей до 1,5 лет поместите в КЗД и идите в ЗС.

Если ЗС далеко и у вас нет противогаза, оставайтесь дома и слушайте сообщения штаба ГО, закройте окна, двери, зашторьте их плотной тканью или одеялом, закройте вентиляционные люки, отдушины, заклейте щели в оконных рамах. Загерметизируйте продукты питания и создайте в ёмкостях запас воды.

Оповестите соседей о полученной опасности.

Помните! Главную опасность для людей на местности, загрязненной РВ, представляет внутреннее облучение. Поэтому, необходимо защитить органы дыхания, используя СИЗ.

Во избежание поражения кожных покровов необходимо использовать плащи с капюшоном, комбинезоны, резиновую обувь, перчатки.

2. Соблюдение правил РБ и личной гигиены.

Для предупреждения или ослабления воздействия на организм РВ:

Максимально ограничьте пребывание на открытой местности, при выходе из помещений используйте СИЗ;

При нахождении на открытой территории не раздевайтесь, не садитесь на землю, не курите;

Периодически поливайте территорию возле дома для уменьшения пылеобразования;

Перед входом в помещение обувь вымойте водой или оботрите мокрой тряпкой, верхнюю одежду вытряхните и почистите влажной щеткой;

Принимайте пищу только в закрытых помещениях, тщательно мойте руки с мылом перед едой и полощите рот 0,5% раствором питьевой соды;

Воду употребляйте только из индивидуальных хозяйств, особенно молоко, зелень, овощи и фрукты, употребляйте в пищу только по рекомендации органов здравоохранения;

Исключите купание в открытых водоемах до проверки степени их РЗ. В течение 7 дней ежедневно принимайте по одной таблетке йодистого калия и давайте детям до 2 лет? часть таблетки.

Размещено на Allbest.ru

Подобные документы

    Характеристика чрезвычайных ситуаций техногенного характера, их классификация. Опасная обстановка, сложившаяся в результате аварии, катастрофы или иного бедствия. Понятие территориальной чрезвычайной ситуации. Аварии с выбросом радиоактивных веществ.

    презентация , добавлен 21.12.2010

    Виды ионизирующих излучений, процесс передачи их веществу. Экспозиционная, поглощенная и эквивалентная дозы, биологический эффект. Закон ослабления интенсивности излучения, коэффициенты ослабления. Основные виды взаимодействия нейтронов с ядрами атомов.

    презентация , добавлен 15.04.2014

    Виды и классификация стихийных бедствий, аварий и катастроф. Причины возникновения аварий на объектах с содержанием радиоактивных веществ. Мероприятия по предупреждению и ликвидации аварий. Спасательные и другие неотложные работы при такого рода авариях.

    дипломная работа , добавлен 01.12.2014

    Сфера применения радиоактивных веществ и источников ионизирующих излучение. Потенциальная опасность для жизнедеятельности человека. Свойства и особенности воздействия ионизирующего излучения на человека. Специализированная система санитарного надзора.

    реферат , добавлен 07.11.2008

    Общие принципы организации тушения пожаров на объектах с наличием радиоактивных веществ. Обеспечение безопасных условий личного состава при тушении пожаров на объектах с наличием радиоактивных веществ. Дезактивация вооружения и боевой техники.

    реферат , добавлен 26.07.2010

    Виды ионизирующих излучений. Строение атома. Элементарные частицы. Составляющие частицы ядра. Число Авогадро. Поле ионизирующего излучения. Флюенс частиц от произвольных точечных источников. Токовые, потоковые величины в рассеивающей и поглощающей среде.

    презентация , добавлен 13.04.2014

    Очаг поражения и важнейшие поражающие факторы. Определение дозы излучения и уровня радиации. Допустимая продолжительность спасательных работ после аварии на атомной электростанции. Определение зоны химического заражения и разрушений ударной волной.

    контрольная работа , добавлен 15.01.2009

    Сернистый ангидрид, его физические, химические, токсические свойства. Оценка химической обстановки при разрушении емкостей, содержащих СДЯВ. Расчет глубины зоны заражения при аварии на химически опасном объекте. Способы локализации источника заражения.

    курсовая работа , добавлен 19.12.2011

    Определение эквивалентности количества АХОВ, перешедшего в первичное и вторичное облако. Расчет глубины и определение предельного значения зоны заражения аммиаком пораженного города. Время подхода облака зараженного воздуха к населенному пункту.

    контрольная работа , добавлен 23.12.2010

    Сильнодействующие ядовитые вещества: определение, поражающие факторы, воздействие на человека. Физические, химические, токсические свойства и способы защиты. Профилактика возможных аварий на химически опасных объектах и снижение ущерба от них.

В настоящее время в нашей стране на многих объектах экономики, военных объектах, в научных центрах и на других предприятиях используются радиоактивные вещества. Отдельные системы, блоки и устройства этих объектов преобразуют энергию, получаемую в результате деления ядер урана и некоторых других тяжелых элементов, в электрическую и другие виды энергии (тепловую, механическую). Ряд предприятий используют радиоактивные вещества в технологических процессах или хранят их на своей территории.

В России в настоящее время имеется 10 атомных электростанций (30 энергоблоков), 113 исследовательских ядерных установок, 12 промышленных предприятий топливного цикла, 9 атомных судов с объектами их обеспечения, а также 13 тыс. других предприятий и организаций, осуществляющих свою деятельность с использованием радиоактивных веществ и изделий на их основе. Все эти предприятия относятся к объектам с ядерными компонентами, но радиационно опасными из них являются не все.

    Запомните!
    Ионизирующее излучение создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков.
    Радиационно опасный объект - это объект, на котором хранят, перерабатывают или транспортируют радиоактивные вещества, при аварии на котором или при его разрушении может произойти облучение ионизирующим излучением людей или радиоактивное загрязнение окружающей среды.
    Под радиоактивным загрязнением окружающей среды понимается присутствие радиоактивных веществ на поверхности местности, в воздухе, в теле человека в количестве, превышающем уровни, установленные нормами радиационной безопасности.

Это должен знать каждый

К радиационно опасным объектам относятся:

  • предприятия ядерного топливного цикла (предприятия урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов);
  • атомные станции (атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АТС);
  • объекты с ядерными энергетическими установками (корабельными, космическими и войсковыми атомными электростанциями);
  • ядерные боеприпасы и склады для их хранения.

Предприятия ядерного топливного цикла осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов, переработку радиоактивных отходов, их хранение и окончательное размещение (захоронение).

Наиболее характерным последствием аварий на предприятиях ядерного топливного цикла (возгорание горючих компонентов и радиоактивных материалов, появление течей и разрывов в резервуарах-хранилищах и др.) является выброс радиоактивных веществ в окружающую среду, который приведет к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды.

Атомная электростанция (АЭС) - это электростанция, на которой ядерная энергия преобразуется в электрическую. На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор. Основными причинами аварий на АЭС могут быть нарушение технологической дисциплины оперативным персоналом станции и недостатки в его профессиональной подготовке, т. е. «человеческий фактор».

Объекты с ядерными энергетическими установками делятся на корабельные объекты, войсковые атомные электростанции, космические ядерные электроустановки. Причинами аварий на этих установках могут служить разгерметизация первого контура реактора (первый контур находится внутри корпуса реактора) или механические повреждения реактора.

Ядерные боеприпасы и взрывное устройство к ним в мирное время хранятся на складах в готовности к выдаче и боевому применению. Причинами возникновения аварийной ситуации с ядерными боеприпасами могут быть столкновение и опрокидывание транспортных средств при их транспортировке, пожары в сборочных помещениях и хранилищах.

Максимальную опасность для населения и окружающей среды представляют аварии на атомных станциях.

    Статистика

    В Российской Федерации семь из десяти действующих АЭС - Ленинградская, Курская, Смоленская, Калининская, Нововоронежская, Ба-лаковская (Саратовская область), Ростовская - расположены в густонаселенной европейской части страны. В 30-километровых зонах АЭС проживает более 4 млн человек.
    За время развития ядерной энергетики (в период с 1957 г. по настоящее время) в мире произошли четыре крупные аварии на АЭС: в 1957 г. в Великобритании (Виндскейл), в 1979 г. - в США (Три-Майл-Айленд), в 1986 г. в СССР (Чернобыль) и в 2011 г. в Японии (Фукусима). Двум последним авариям была присвоена высшая, 7-я категория.

Международное агентство по атомной энергетике (МАГАТЭ) разработало специальную шкалу классификации тяжести аварий на АЭС. Шкала имеет 7 категорий тяжести последствий аварий и происшествий на АЭС и предназначена для оценки серьезности происшедшего, быстрого оповещения и выбора адекватных мер безопасности.



Исторические факты

Коротко приведем анализ последствий аварии на Чернобыльской АЭС.

26 апреля 1986 г. на 4-м энергоблоке Чернобыльской АЭС произошел взрыв реактора с разрушением его активной зоны и интенсивным выбросом в окружающую среду радиоактивных веществ в течение 10 суток. В результате радиоактивному загрязнению подверглись территории России, Белоруссии и Украины, а также территории стран Балтии и ряда других европейских государств.

В результате взрыва на станции погибли 2 человека, 145 человек из работников станции, пожарных и других ликвидаторов последствий получили дозу облучения от 100 до 1600 бэр. 27 человек из них вскоре скончались.

Выброшенные из реактора радионуклиды создали вблизи него и в пределах 30-километровой зоны большие уровни радиации, жители из этих районов были эвакуированы. Позже к этой зоне эвакуации присоединили местности, где суммарная доза получения населением к первому году после аварии могла бы превысить 10 бэр. В целом до конца 1986 г. из 188 населенных пунктов, включая г. Припять (город чернобыльских энергетиков), было отселено 116 тыс. человек.

Необходимо отметить, что наибольшую угрозу здоровью неэвакуированного населения представляло загрязнение воздуха и почвы радиоактивным йодом. Попав внутрь, он активно захватывался из крови щитовидной железой, приводя к местному облучению в дозах более 300 бэр.

Из-за нерешительности и некомпетентности руководителей местных органов власти решение на проведение йодной профилактики было принято с большим опозданием - 6 мая 1986 г. В результате большие дозы облучения (более 300 бэр) щитовидной железы получили тысячи людей.

В основе биологического воздействия ионизирующего излучения на организм человека лежит степень ионизации атомов и молекул организма выше допустимой нормы. При допустимой норме ионизации организм восстанавливает нарушения, а превышение нормы приводит к развитию лучевой болезни.

    Внимание!
    Лучевая болезнь возникает при воздействии на организм ионизирующих излучений в дозах, превышающих предельно допустимы.

В настоящее время хорошо изучены последствия однократного облучения человека и выделено несколько степеней лучевого поражения.

Острая лучевая болезнь легкой (I) степени развивается при кратковременном облучении всего тела в дозе, превышающей 100 бэр. Она сопровождается головокружением, редко - тошнотой, отмечается через 2-3 ч после облучения.

Острая лучевая болезнь средней (II) степени развивается при воздействии ионизирующего излучения в дозе от 200 до 400 бэр. Первичная реакция (головная боль, тошнота, иногда рвота) возникает через 1-2 ч. Острая лучевая болезнь тяжелой (III) степени наблюдается при воздействии ионизирующего излучения в дозе 400-600 бэр. Первичная реакция возникает через 30-60 мин и резко выражена (повторная рвота, повышение температуры тела, головная боль).

Острая лучевая болезнь крайне тяжелой (IV) степени отмечается при воздействии ионизирующего излучения в дозе более 600 бэр. Симптомы обусловлены глубоким поражением кроветворной системы, приобретают первостепенное значение поражения других органов (кишечника, кожи, головного мозга) и интоксикация (состояние организма, вызванное воздействием токсических веществ). Смертельные исходы практически неизбежны.

Необходимо отметить, что при хроническом облучении потоками излучения малой дозы суммарные дозы могут быть большими. Наносимые организму повреждения частично могут восстанавливаться. Поэтому доза более 50 бэр, приводящая при однократном воздействии к болезненным явлениям, при хроническом облучении, растянутом, к примеру, на 10 лет, к тяжелым отклонениям в здоровье человека может не привести. Эти обстоятельства позволяют установить допустимые уровни облучения.

Для того чтобы можно было количественно определить степень воздействия облучения на организм, было введено понятие эквивалентной дозы облучения, которую связывают со степенью ионизации вещества. Доза измеряется энергией ионизирующего излучения, переданного массе облучаемого вещества.

В системе СИ единицей эквивалентной дозы служит зиверт (Зв). 1 Зв - 100 бэр. (Заметим, что понятие дозы всегда определяется по отношению к единице массы или объема вещества.)

Без ядерной энергетики человечеству, вероятно, не обойтись. Поэтому в настоящее время проводятся интенсивные исследования с целью повышения безопасности реакторов АЭС, усиления средств их защиты, в том числе и от ошибочных действий обслуживающего персонала, принимаются меры повышения уровня общей культуры в области безопасности у населения, проживающего в зонах АЭС.

Вопросы

  1. Какие объекты относятся к радиационно опасным объектам?
  2. Какое событие понимается как радиационная авария?
  3. Какие вещества относятся к радиоактивным?
  4. Что такое ионизирующее излучение и каково его влияние на организм человека?
  5. Какими величинами определяется степень воздействия ионизирующего излучения на организм человека?

Задание

Перечислите причины появления лучевой болезни и существующие степени ее проявления.

1. Атомные электростанции. Роль атомных электростанций в структуре мировой выработки электроэнергии неуклонно возрастает. Россия (в составе СССР) запустила первый в мире атомный реактор в мирных целях, но постепенно утрачивала свои

передовые позиции. В настоящее время ситуация с числом действующих реакторов в мире по данным МАГАТЭ и Росатоматакова: США – 104, Франция – 59, Япония – 55, Россия - 31, Великобритания – 23, Южная Корея – 20, Канада – 18, Германия – 17, Украина – 15. Сейчас доля вырабатываемой на АЭС России электроэнергии составляет 16%. Поставлена задача, построив к 2030 г. 40 реакторов, довести эту долю до 25%.

2. Предприятия по изготовлению ядерного топлива, боевых зарядов и др.

3. Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов (к 2005 г. в России накоплено более 70 млн. тонн твёрдых радиоактивных отходов).

4. Военные объекты с ядерными боеголовками.

5. Учреждения, имеющие исследовательские реакторы и испытательные стенды.

6. Предприятия и организации, использующие радиоактивные изотопы в своей деятельности (онкологические клиники, дефектоскопические лаборатории и т.д.).

7. Транспортные средства, имеющие ядерно-энергетические установки.

8. Предприятия и организации по ремонту и испытаниям объектов, связанных с ионизирующим излучением.

9. Транспортные средства, перевозящие радиоактивные материалы.

10. Последствия Чернобыльской аварии, выразившиеся в радиационно-зараженных участках местности.

Большую угрозу для здоровья и жизни человека представляют аварии на за­водах ядерной промышленности, атомных энергетических установках, в хранили­щах ядерных материалов и отходов.

Радиационная авария - это авария на РОО, при которой произошел выброс радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, вызвавший облучение населения и загрязнение окружающей среды.

В результате аварий на РОО в атмосферу выбрасываются РВ, распростра­няющиеся под воздействием ветра на значительные расстояния. Выпадая в виде осадков, РВ образуют зонурадиоактивного загрязнения .Зона радиоактивного загрязнения - местность, на которой произошло выпадение радиоактивных веществ. При определенных кон­центрациях загрязнения местности проживание на ней становится опасным для жизни.

Радиационная авария может произойти по не­скольким причинам: ошибки при проектировании, износ оборудования, ошибки оператора и нарушения эксплуатации.

Аварии на хранилищах радиоактивных отходов представляют большую опасность, так как они могут привести к длительному радиоактивному загрязнению обширных территорий высокотоксичными радионуклидами и вызвать необходимость широкомасштабного вмешательства.

Подобный аварийный выброс произошел 29 сентября 1957 г. на комбинате «Маяк» (Челябинск-40). Был загрязнен участок местности шириной 9 км, длиной более 100 км. След протянулся через Челябинскую, Свердловскую и Тюменскую области. Было эвакуировано 10 700 чел., проживающих на этой территории.

Аварийная ситуация при глубинном захоронении жидких радиоактивных отходов в подземные горизонты возможна при внезапном разрушении оголовка скважины, находящейся под давлением.

В случае размыва и растворения пород пласта-коллектора агрессивными компонентами радиоактивных отходов, например кислотами, увеличивается пористость пород, что может приводить к утечке газообразных радиоактивных отходов. В этом случае переоблучению, как правило, может подвергнуться персонал хранилища.

Основной вклад в формирование радиоактивного загрязнения местности в случае радиационной аварии на радиохимическом производстве могут вносить изотопы 90Sr, 134Cs, :37Cs, 238Pu, 239Pu, 240Pu, 24"Pu, 24lAm, 244Cm. Повышенный фон гамма-излучения на местности создают в основном 134Cs, l37Cs.

Аварии с радионуклидными источниками связаны с их использованием в промышленности, газо- и нефтедобыче, строительстве, исследовательских и медицинских учреждениях. Аварии с радиоактивными источниками могут происходить без их разгерметизации и с разгерметизацией.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы 239Ри и 24iAm с преобладанием внутреннего облучения за счет ингаляции.

Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на нормативно-правовых документах, регламентирующих ее безопасность.

Распространенными в перевозках и наиболее опасными являются гексафторид урана и соединения плутония. Соединения долгоживущего (более 2000 лет!) плутония (обычно диоксид плутония) представляют опасность из-за длительного ос-излучения и высокой токсичности. Основным путем поступления аэрозоля диоксида плутония является ингаляционный.

Отдельно следует указать на возможность возникновения аварии реактора с развитием цепной ядерной реакции - активного аварийного взрыва, сопровождающегося не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

В результате крупномасштабных радиационных аварий из поврежденного ядерного энергетического реактора в окружающую среду выбрасываются радиоактивные вещества в виде газов и аэрозолей, которые образуют радиоактивное облако. Это облако, перемещаясь в атмосфере по направлению ветра, вызывает по пути своего движения радиоактивное загрязнение местности и атмосферы.

На ядерных энергетических установках в результате аварийного выброса возможны следующие факторы радиационного воздействия на население:

Ø внешнее облучение от радиоактивного облака и от радиоактивно загрязненных поверхностей земли, зданий, сооружений и др. (гамма-, бета- и рентгеновское излучение);

Ø внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов питания и воды (аль­фа- и бета-излучение);

Ø контактное облучение за счет загрязнения радиоактивными веществами кожных покровов.

Одна из особенностей радиоактивного загрязнения заключается в том, что его невозможно обнаружить без специальных дозиметрических приборов, т. к. радиация не обладает ни цветом, ни запахом, ни вкусом.

Радиоактивные излучения способны проникать через различные толщи мате­риала и вызывать нарушения всех жизненно важных процессов в орг анизме че­ловека (кроветворения, работы нервной системы, желудочно-кишечного тракта). Человек в момент воздействия радиации не получает телесных повреждений и не испытывает болевых ощущений, однако в результате облучения у пораженного позже может развиться лучевая болезнь.

После аварии наибольшую опасность представляет внешнее облучение, которое проникает в организм через покровы кожи и органы дыхания. Через 2-3 месяца после аварии большую опасность представляет внутреннее облучение, которое проникает в организм через желудочно-кишечный тракт с продуктами питания и водой. Внутреннее облучение наиболее опасно для человека, т. к. внутренние органы защитить невозможно.

Ионизирующее облучение:

а-(альфа)-иэлучение - это поток частиц, являющихся ядрами атома гелия. Это излучение распространяется в средах прямолинейно со скоростью 20 ООО км/с. Альфа-частицы обладают большой массой, быстро теряют свою энергию и по­этому имеют незначительный пробег: в воздухе - до 11 см, биологических тка­нях - 30-130 мкм, алюминии - 16-67 мкм. Несмотря на то, что альфа-частицы обладают наименьшей проникающей способностью, они имеют наибольшую по­ражающую способность;

р-(бета)-излучение - это поток электронов, обладающих большей проникаю­щей способностью и меньшей поражающей способностью, чем альфа-излучение. ()ни возникают в ядрах атомов при радиоактивном распаде и сразу же излучаются or |уда со скоростью, близкой к скорости света. Проникающая способность бета- Излучения в воздухе составляет несколько метров, в биологических тканях - не­сколько сантиметров, в алюминии - несколько миллиметров;

рентгеновское излучение - электромагнитное излучение высокой частоты и короткой длиной волны, возникает при бомбардировке веществ потоком элект­ронов. Обладает большой проникающей способностью;

у-(гамма)-излучение - это поток квантовой энергии, распространяющейся со скоростью света. Обладает большей проникающей способностью и меньшей по­ражающей способностью, чем рентгеновское излучение.

Й учебный вопрос.

Радиационно опасными объектами (РОО) называются объекты, на которых хранят, перерабатывают, используют или транспор­тируют радиоактивные вещества в значительных количествах. Их опасность обусловлена тем, что при авариях может произойти облучение людей (персонала) и (или) радиоактивное загрязне­ние местности, сооружений, водоемов, приземного воздуха.

К радиационно опасным объектам относятся: . предприятия атомного топливного цикла (АТЦ) - атомные электростанции (АЭС), ядерные реакторы, хранилища отрабо­танного ядерного топлива и радиоактивных отходов;

предприятия по изготовлению ядерного топлива и ядерных за­рядов - урановые рудники, заводы по обогащению урана, изго­товлению топливных кассет;

предприятия по переработке отработавшего ядерного топлива и захоронению радиоактивных отходов;

научно-исследовательские и проектные организации, реакто­ры, испытательные стенды;

транспортные ядерно-энергетические установки на кораблях, подводных лодках, космических аппаратах;

транспортные средства, предназначенные для перевозки ра­диоактивных грузов.

В России по состоянию на 2000 г. имелось около 115 крупных РОО, среди которых 10 атомных электростанций с 30 энергоблока­ми, 113 исследовательских ядерных установок, 12 промышленных предприятий АТЦ, девять атомных судов с объектами их обеспече­ния, более 250 других судов с ядерными энергетическими установ­ками, а также около 13 000 более мелких предприятий и организа­ций, использующих радиоактивные вещества.

Основные проблемы радиационной опасности связаны с эксп­луатацией предприятий АТЦ (в частности АЭС). Большинство российских АЭС расположены в густонаселенной европейской части страны, а в их 30-километровых зонах постоянного контро­ля радиационной обстановки проживает около 4 млн человек. В чем же заключается потенциальная опасность АЭС?

В атомной энергетике используется энергия, заключенная в атомных ядрах некоторых природных элементов Земли (урана, тория). Если ядро сверхтяжелого атома урана превращается в два отдельных и меньших по массе ядра (осколки деления), избыто­чная энергия выделяется в виде теплоты. Этот процесс лежит в основе действия всех ядерных реакторов (ЯР), в процессе работы которых накапливаются радиоактивные осколки деления. Они и представляют потенциальную опасность, поскольку имеют высо­кую активность.

При нормальной работе АЭС выходу радиоактивных веществ в окружающую среду препятствуют: конструкция ЯР, технологи­ческие системы АЭС, системы противоаварийного характера. Об­разующиеся при нормальной работе АЭС жидкие и газообразные радиоактивные отходы проходят многоступенчатую очистку и выдержку, а их поступление в окружающую среду жестко регла­ментировано.

Расчеты доказывают, что индивидуальная доза для человека, проживающего вблизи АЭС, за счет поступления в окружающую среду радиоактивных продуктов АЭС при максимальном годовом выбросе не превышает 1 % дозы, обусловленной естественным радиационным фоном. Суммарная активность радионуклидов в сельскохозяйственных растениях в зоне АЭС практически не от­личается от фонового значения.

Радиационные факторы при авариях на АЭС

Радиационная авария сопровождается прямым или косвенным радиационным воздействием на человека и окружающую среду с уровнями, превышающими допустимые пределы.

Несмотря на принятие самых жестких конструкторских и орга­низационно-технических мер по обеспечению безопасности ядер­ных реакторов они, будучи техническим комплексом большой сложности, создают определенную степень риска возникновения аварии, опасной для населения и окружающей среды. Вероятность тяжелой аварии на АЭС, как показывает опыт Чернобыля, ни­когда не может быть уменьшена до нуля. Цена ее исключительно высока.

Для единообразной оценки опасности аварии на любой АЭС в любой стране экспертами Международного агентства по атомной энергии (МАГАТЭ) предложена международная шкала событий

на АЭС. Основная цель этой шкалы - выдача информации о ра-диационно опасных событиях в виде, понятном для обществен­ности всех стран. С 1990 г. эта международная шкала стала вне­дряться в России.

Отметим, что при авариях на АЭС может произойти только тепловой взрыв; взрыв ядерного типа невозможен в соответствии с физическими законами.

В развитии крупной радиационной аварии на АЭС различают три стадии.

Первая стадия - тепловой взрыв в активной зоне реактора, выброс смеси газоаэрозольных радиоактивных продуктов из реак­тора и их последующее истечение. В образующемся при этом обла­ке и его шлейфе преобладают радиоактивные благородные газы (РБГ) - изотопы криптона и ксенона. Содержатся радиоизотопы йода (в основном йода-131), а также непосредственные продукты деления: цезий-137, стронций-89, -90. Так как облако за счет корот-коживуших изотопов является мощным гамма-излучателем и рас­пространяется на небольшой высоте (менее 1 км), то на этом этапе основным радиационным фактором на расстояниях R = 30...50 км от АЭС является внешнее облучение гамма-излучением от облака и его шлейфа. Облучению подвергаются люди, животный и расти­тельный мир. Радиоактивное облако формируется на высоте 600 - 800 м над поверхностью Земли.

При прохождении облака мощность дозы от него на высоте 1 м от поверхности земли может составлять от нескольких сотен (при Я, = 1 ...3 км от АЭС) до единиц рад в час (при R = 30 - 50 км).

Вторая стадия - постепенное осаждение радиоактивных ве­ществ и загрязнение местности и приземной атмосферы. В радио­активном облаке содержатся очень мелкие (менее 1 мкм) части­цы и аэрозоли, скорости их осаждения весьма малы; потоками воздуха они разносятся на сотни и тысячи километров от места аварии (в результате аварии на ЧАЭС произошло радиоактивное загрязнение территории от Балтийского моря до Германии и Ита­лии). Осаждение может продолжаться в течение нескольких дней и недель.

При длительном истечении радиоактивных продуктов в атмо­сферу ветер на высотах до 1 км может неоднократно менять свое направление. Поэтому загрязнение территории будет происходить во все стороны от источника аварии и иметь на больших удалени­ях в разных направлениях «пятна» с повышенными уровнями ра­диации за счет вымывания радиоактивных веществ из облака осад­ками.

Главным фактором радиационного риска на стадии осаждения является поступление в организм радиоактивного йода (йод-131, период полураспада Т 1/2 = 8 дней) при вдыхании и по пищевой цепочке трава-скот-молоко (мясо) - щитовидная железа. Йод из-

бирательно накапливается в щитовидной железе, вызывая раковые заболевания. Так как щитовидная железа у детей имеет массу в 4 - 5 раз меньшую, чем у взрослых, то этот процесс наиболее опасен для детей. Йод-131 практически полностью прекращает свое суще­ствование через 3 - 4 мес после выброса из аварийного источника.

Третья (заключительная) стадия, когда выпадение заверши­лось и сформировалось радиоактивное загрязнение местности (РЗМ), характеризуется максимальной потенциальной опаснос­тью радиоактивного загрязнения почвы, воды и продукции сель­ского хозяйства долгоживущими радиоактивными изотопами цезия-137 1/2 = 30,2 года) и стронция-90 1/2 = 28,5 лет), более длительного, чем при ядерном взрыве.

Количественной характеристикой загрязнения на больших площадях является плотность загрязнения, т.е. количество ра­диоактивных веществ, выпавших на единице площади, чаще всего используемая единица - кюри на квадратный километр, Ки/км 2 . (Связь плотности загрязнения по цезию с мощностью дозы на высоте 1 м от поверхности земли определяют при помо­щи соотношения 1 Ки/км 2 -10 мкрад/ч, что соответствует годо­вой дозе около 10 мрад.)

Для условий мирного времени в качестве безопасной нормы загрязнения принимают 15 Ки/км 2 . Если плотность загрязнения больше 15 Ки/км 2 , то на территории проводится постоянный ра­диационный контроль и медицинское обследование населения. Запрещается использовать загрязненные продукты питания. При плотности загрязнения выше 40 Ки/км 2 возможна эвакуация лю­дей. В зависимости от плотности загрязнения цезием-137 законода­тельно предусмотрено выделение на следе аварийного выброса Чер­нобыльской АЭС следующих зон: отчуждения - более 40 Ки/км 2 , отселения - 15 - 40 Ки/км 2 , проживания с правом отселения - 5 - 15 Ки/км 2 , проживания с льготным статусом -1 - 5 Ки/км 2 .

В зоне отчуждения проживание населения запрещено; в зоне отселения люди подлежат обязательной эвакуации, если средне­годовая доза облучения превысит допустимое значение 0,5 рад.

Доза внешнего облучения от загрязненной местности обычно не превышает допустимых значений даже при длительном на­хождении на ней. Так, на территориях с плотностью загрязнения 15 Ки/км 2 средняя годовая доза внешнего облучения за 1991 г. составила около 0,15 рад в год.

Полная доза облучения складывается из внешней и внутрен­ней. Доза внешнего облучения надежно определяется исходя из плотности загрязнения и среднего времени пребывания в домах и вне их с учетом характера построек (каменные, деревянные). Прак­тически доза внутреннего облучения на 70 - 80% определяется загрязнением предполагаемого к потреблению молока; поэтому о ней судят, измеряя степень загрязнения молока.



Понравилась статья? Поделиться с друзьями: